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Preface to the first edition

Every book tells a story and there is a story behind every book. This story begins in 
1980, in the conference room of the Laboratory for the Structure of Matter at the Naval 
Research Laboratory (NRL) in Washington, DC, where Peter D’Antonio was employed 
as a diffraction physicist. Knowing Peter’s interest in music, a colleague handed him 
the latest issue of Physics Today with a cover photo of Manfred Schroeder seated in 
an anechoic chamber. The article suggested using number theoretic diffusers in concert 
halls. While Peter’s interest at the time was not in concert halls, he became fascinated 
with the thought of using these diffusers in a renovation of Underground Sound, a 
private studio he originally built in 1972 with Jerry Ressler. The acoustic renovation 
utilized a new concept called live end dead end® proposed by Don and Carolyn Davis 
of Synergetic Audio Concepts (Syn-Aud-Con) and implemented successfully by Chips 
Davis.

At that time, Peter was examining the three-dimensional (3D) structure of matter in 
various phases using electron and X-ray diffraction techniques. Peter shared the article 
with John Konnert, a colleague at NRL, and it became apparent that the ‘reflection 
phase gratings’ suggested by Schroeder were in effect two-dimensional (2D) sonic 
crystals, which scatter sound in the same way that 3D crystal lattices scatter electro-
magnetic waves. Since the diffraction theory employed in X-ray crystallographic 
studies was applicable to reflection phase gratings, it was straightforward to model 
and design the diffusers. At this time, Peter’s only link to the field of acoustics was a 
love of composing, recording and performing music. Having scientific backgrounds, 
John and Peter approached acoustics as they did the field of diffraction physics, and 
began researching and publishing findings in the scientific literature. The Audio 
Engineering Society (AES) and Syn-Aud-Con offered a unique forum and community 
for discussing the research. In October 1983, at the 74th AES Convention in New 
York, Peter met Bob Todrank following a presentation of Peter and John’s first paper 
on Schroeder diffusers. Bob was designing a new studio for the Oak Ridge Boys in 
Hendersonville, TN and was interested in utilizing these new acoustical surfaces. The 
studio was a resounding success and turned out to be a harbinger of many exciting 
things to come.

In 1983, Peter and John measured quadratic residue and primitive root diffusers with 
a TEF 10 analyzer at a Syn-Aud-Con seminar in Dallas, TX, with the assistance of 
Don Eger of Techron. Here Peter met Russ Berger who was a pioneer in the use of new 
products in his firm’s recording studios. In 1984, an intensive measurement programme 
was carried out using Richard Heyser’s time delay spectrometry implementation. 
Farrell Becker was very helpful in the initial evaluation of these exciting new surfaces. 



x Preface to the first edition

Not having access to an anechoic chamber, a boundary measurement technique was 
developed. These measurements were initially carried out at full scale in large spaces 
like open fields and parking lots, eventually moving indoors to a sports arena, a motion 
picture sound stage, and a local high school gymnasium. The measurements enabled 
the theories to be validated.

The Oak Ridge Boys’ Acorn Sound Recorders project was celebrated with a Syn-
Aud-Con control room design workshop in 1984. This project led to many others and 
collaborations with a growing community of new studio designers were undertaken. 
Neil Grant was an early staunch proponent of the research and products. Some of 
his milestone designs include Peter Gabriel’s Real World Studios, Box, UK; Reba 
McEntire’s Starstruck Studios, Nashville, TN; Sony Music, New York, NY and 
Cinerama Theater, Seattle, WA. In 1989, John Storyk integrated diffusive technology 
in many of his designs, including Whitney Houston Studio, Mendham, NJ; Electronic 
Arts, Vancouver, BC and Jazz at Lincoln Center, NY highlighting the list. Today much 
of the recorded music you hear is created in music facilities utilizing RPG Diffusor 
Systems Inc. technology. These fledgling years established relationships that continue 
to this day and produced many acoustical landmarks.

Interest in recording facilities naturally spread to broadcast facilities, where diffuser 
technology is now commonplace. Facilities include BBC, NPR, NBC, CBC and most 
of the broadcast networks due to Russ Berger’s innovative designs. Being musicians 
and audiophiles led to significant involvement in residential high end audio listening 
rooms, as well as production studios.

In 1989, Peter was introduced to Jack Renner, President of Telarc Records, the 
company that started the classical high end recording industry on a digital journey. 
Jack was recording the Baltimore Symphony Orchestra at the Meyerhoff Symphony 
Hall and asked if RPG could assist him. Following initial experimentation, Telarc 
graciously credited RPG® as Telarc’s exclusive acoustical system for control room and 
stage use for the Berlioz Symphonie Fantastique in 1990. The somewhat accidental 
stage use and overwhelming acceptance by musicians and conductor prompted an 
objective and subjective investigation of stage acoustics and acoustical shells both with 
small ensembles and with the Baltimore Symphony Orchestra. These chamber group 
studies were conducted with Tom Knab at the Cleveland Institute of Music, where Peter 
has been adjunct professor of acoustics since 1990, at the invitation of Jack Renner. 
In 1989, RPG was privileged to provide a custom number theoretic surface for the 
rear wall of Carnegie Hall, New York. This installation, along with the new diffusive 
acoustical shell development, launched RPG’s involvement into performing arts 
applications, which eventually included the Fritz Philips Muziekcentrum, Eindhoven 
and the Corning Glass Center, Corning, NY.

Many of the acoustical consultants involved in the design of worship spaces began 
to include the use of diffusers for rear wall applications and acoustical shells. While 
RPG has collaborated with many acousticians, the relationship with Mike Garrison is 
noteworthy for the sheer number and size of the successful worship spaces produced 
using diffusers. The crown jewel of this collaboration is the 9,000 seat South East 
Christian Church in Louisville, KY.

In 1990, RPG funded the DISC Project in an attempt to devise a standard methodology 
for evaluating diffuser quality. In 1991, Peter proposed a directional diffusion coefficient 
and the AES invited him to chair standards committee SC-04-02 to formally develop 
an information document describing these procedures.
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In 1993, David Quirt, Associate Editor of the Journal of the Acoustical Society of 
America (JASA), asked Peter to referee a paper by Trevor Cox entitled ‘Optimization 
of profiled diffusers’. (Trevor’s research journey had started a few years earlier in 1989 
when, under the direction of Raf Orlowski and Yiu Wai Lam, he completed a PhD 
on Schroeder diffusers at Salford University, UK.) Trevor’s paper outlined a process 
that combined boundary element modelling and multi-dimensional optimization 
techniques to make better diffusers. In Peter’s view, this paper represented a creative 
milestone in diffuser development on par with Schroeder’s seminal contribution. Peter 
and John’s review of the paper consumed many months. It required the writing of 
boundary element codes and developing the first automated goniometer to measure 
these optimized surfaces. During the summer of 1994, Paul Kovitz helped to complete 
the measurement software. Trevor’s revised paper, accompanied by a refereed paper 
of Peter and John’s review, were published in 1995. Since this was nearly three years 
after Trevor submitted the paper to JASA, this must have seemed to be the peer review 
from hell, especially as the referees’ comments were 36 pages long.

Peter finally met Trevor in Amsterdam at an AES SC-04-02 standards committee 
meeting in 1994 and again in Arup Acoustics’ office in London. Our strong mutual 
interests led to an informal collaboration. In 1995, Trevor became a research consultant 
to RPG Diffusor Systems, Inc. This relationship started with developing an automated 
program to optimize loudspeaker and listening positions in a critical listening room 
and blossomed to generate much of the contents of this book.

Realizing that good acoustical design results from an appropriate combination of 
absorptive, reflective and diffusive surfaces, as mentioned in the Introduction, Peter 
(and later with Trevor) began developing absorption technologies as well, including 
hybrid abffusive (absorptive/diffusive) and diffsorptive (diffusing/absorbing) systems, 
concrete masonry units, low frequency absorbing arena seating risers, nestable open-
cell foam systems and dedicated absorptive low frequency membrane systems.

In 1995, Peter and Trevor became aware of the diffusion research of James Angus 
on amplitude gratings and modulated phase gratings. James has made significant 
contributions to the field of diffuser design and we both have great respect for his 
insight and enjoy our collaborations with him. Also in 1995, we met Eckard Mommertz 
and Michael Vorlander at the 15th International Congress on Acoustics (ICA) in 
Trondheim, Norway. It was at this meeting that we learned of their work developing a 
procedure to measure the random incidence scattering coefficient. We have maintained 
close collaboration to this day, especially as members of the ISO WG 25, chaired by 
Jens Holger Rindel.

To further the development of the diffusion coefficient, RPG co-funded a three 
year grant with the Engineering and Physical Sciences Research Council of the United 
Kingdom, beginning in 1996. Trevor, Yiu Wai Lam and Peter were the investigators 
and Tristan Hargreaves was the doctoral student. This research was very fruitful in 
that it produced the first 3D measurement goniometer and yielded a robust diffusion 
coefficient, which has since been published as AES-4id-2001.

This diffusion coefficient has since been used as a metric to develop a range of new 
diffusing surfaces, including optimized welled diffusers, profile diffusers, 1D and 2D 
curved diffusers, baffled diffusers, genetic binary hybrid surfaces, flat and curved binary 
amplitude gratings, fractal and aperiodically modulated surfaces – in effect, many of the 
topics included in this book. These new optimized custom curved surfaces have found 
application in performance spaces like Kresge Auditorium, Boston, MA; Hummingbird 
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Center, Toronto, Canada; Edwina Palmer Hall, Hitchin, UK and also recording facilities 
like Sony Music’s premier mastering room M1, in New York.

Things began falling into place and all of the relevant diffusion research was 
collected into a special edition of Applied Acoustics, entitled ‘Surface Diffusion in 
Room Acoustics’, guest edited by Yiu Wai Lam and published in June of 2000. Lam 
also organized a symposium in Liverpool that year. In September of 2001, a special 
structured session on scattering in room acoustics was organized by Michael Vorlander 
at the 17th ICA in Rome. Having played a pioneering role in making Schroeder’s 
theoretical suggestions a practical reality, it was personally very gratifying for Peter to 
be part of a session dedicated to a topic which started as an intellectual curiosity, and 
has now turned into a diffuser industry and a field of research actively being studied 
by the leading acousticians of our time.

There have been many significant accomplishments over the past 20 years. We 
now know how to design, predict, optimize, measure, characterize and standardize 
the performance of scattering surfaces. While there is still much to do, there is a 
general consensus in the architectural acoustics community that a solid theoretical 
and experimental foundation has been laid, that diffuser performance can now be 
quantified and standardized and that diffusers can now be integrated into contem-
porary architecture, taking their rightful place along with absorbers and reflectors in 
the acoustical palette. The future holds many exciting possibilities.

It is a good time in the history of diffuser development to tell this story. This book 
has allowed us to chronicle developments with sufficient scientific detail, and to collect 
in one volume much of what is known about both diffusers and absorbers. In an effort 
to make this book ‘timeless’, we are providing a website www.rpginc.com/research, at 
which we will provide updates, polar responses of 1D and 2D diffusers, and additional 
diffusion and correlation scattering coefficients for 2D diffusing surfaces. You can 
contact us and tell us about technology and techniques we may have inadvertently 
missed in the book. So stay tuned and ‘Listen to the Music, Not the Room’.

Peter D’Antonio
Trevor Cox

Authors
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As society evolves, new problems arise and these challenges must be met with new 
technology. For instance, sustainability is influencing the materials used in absorbers 
and diffusers. Intractable problems, such as environmental noise, continue to drive 
innovative new solutions. Furthermore, the general expectation of better quality design 
in the built environment has meant that designers have to concern themselves about 
the visual aesthetics of treatments alongside acoustic performance.

This second edition brings the technology of absorbers and diffusers up to date. 
For instance, the ubiquitous fabric wrapped panel and acoustical ceiling tile no longer 
address all of the concerns of our day. Therefore, we have expanded the description 
of other absorber technologies, such as microperforated designs. The sound diffuser 
continues to evolve to improve performance and to meet new demands for artistic 
shapes. Each stage in the evolution of these technologies overcame a particular short-
coming and increased performance.

But it isn’t just the absorbers and diffusers that are changing; there have been new 
developments in measurement methods, standards and prediction models. For instance, 
recent advances in 3D solid prototyping printers greatly simplify the fabrication of 
diffuser test samples. To take another example, new time domain methods are being 
developed to predict how absorbers and diffusers interact with sound.

It is often said that new technology takes many years to be assimilated into the 
culture. Well 2008 was the 25th anniversary of the founding of RPG Diffusor Systems, 
Inc. and it is fair to say that diffusion technology is fully integrated into every aspect of 
architectural acoustics. Acousticians are routinely including absorption and diffusion 
coefficients into design specifications and architects are embracing the innovative 
diffusive shapes into their projects.

Peter D’Antonio
Trevor Cox

Authors
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Glossary of frequently used symbols

Vectors are denoted in bold

a Half diffuser or reflector width (m)
a Fibre or hole radius (m)
A Total absorption of a room (m2)
A Scaling constant
An Coefficients for grating lobes (Pa)
b Half diffuser length (m)
c Speed of sound (ms–1), in air unless otherwise stated. Subscript 0 denotes value 

in air where ambiguity might arise otherwise (≈343 ms–1)
cp Specific heat capacity of air at constant pressure (≈1.01 JKg–1K–1)
d Cavity depth Helmholtz absorbers (m)
d Diffusion coefficient
d Thickness of materials (m)
dψ Diffusion coefficient for incident angle ψ
dn Depth of the nth well in a Schroeder diffuser (m)
D Cell width for Helmholtz absorbers (m)
E Ratio of the specimen perimeter to the specimen area absorption samples
f Frequency (Hz)
f0 Design frequency (Hz)
g Acceleration due to gravity (ms–2)
G Green’s function
H0

(1) Hankel function of the first kind of order zero
H Transfer function
FT() Fourier transform
j √-1
k Wavenumber (m–1). Subscript 0 denotes value in air where ambiguity might 

otherwise arise 
kx Wavenumber component in x direction, similar expressions for y and z (m–1)
ks Tortuosity
Ke Effective bulk modulus (kgm–1s–2)
l Depth of materials (m)
m Mass per area (kgm–2)
m Order of diffraction or grating lobes
m Energy attenuation coefficient for absorption in air
m Constant relating finite to infinite sample absorption coefficients



xvi Glossary of frequently used symbols

MLS Maximum Length Sequence
n Normal to surface, for BEM modelling this is pointing out of the surface
N Number of wells per period
N Prime number generator and/or length of pseudorandom sequence
Np Prandtl number (≈0.77)
p Pressure (Pa or Nm–2). Subscript 0 denotes value in air where ambiguity might 

otherwise arise 
p1 Pressure from a single diffuser/reflector (Pa)
pa Pressure from an array (Pa)
pi Pressure incident direct from a source (Pa)
pm Pressure of the mth order diffraction lobe (Pa)
P0 Atmospheric pressure (≈101,320 Pa)
ps Pressure scattered from a surface (Pa)
PRD Primitive Root Diffuser
QRD® Quadratic Residue Diffuser
r Distance (m)
r Primitive root of N
r′ Distance from image source (m)
r Receiver position
r0 Source position
rs Point on surface
R Pressure reflection coefficient
s, sn Number sequence
s Diffuser surface
s Standing wave ratio
s Scattering coefficient
S Surface area of a room (m2)
S Area of holes in Helmholtz resonator (m2)
sinc(x) = sin(x)/x
Sxxm Maximum energy in autocorrelation side lobes
Sxym  Maximum energy in cross-correlation
t time (s)
t Sheet thickness for Helmholtz and membrane absorbers (m)
t' Sheet thickness for perforated sheet including end corrections (m)
ta Resistive layer thickness for Helmholtz and membrane absorbers (m)
T60 Reverberation time (s)
u Particle velocity (ms–1)
V Volume (m3)
w Well or slot width (m)
W Repeat distance or periodicity width (m)
x Cartesian coordinate (m)
y Cartesian coordinate (m)
z Specific acoustic impedance (Pa s m–1 or MKS rayl)
z Cartesian coordinate (m)
zc Characteristic impedance of a medium (MKS rayl)
zf Flow impedance (MKS rayl)
zn Normalized specific acoustic impedance (=z/ρc)
α Absorption coefficient
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αs Random incidence absorption coefficient
α∞ Random incidence absorption coefficient for an infinite sized sample
β Admittance (rayl–1)
β′ Admittance with outward pointing normal (rayl–1)
βn Normalized admittance (=βρc)
ε Porosity or fractional open area
δ End correction factor (i.e. ≈0.85 if baffled)
δ Delta function
δc Correlation scattering coefficient
δv Size of viscous boundary layer (m)
δh Size of thermal boundary layer (m)
γ Ratio of specific heat capacities (≈1.4 in air)
η Viscosity of air (1.84×10–5 poiseuille)
κ Thermal conductivity of air (≈ 2.41×10–2 WmK–1)
λ Wavelength (m)
λ0 Design wavelength (m)
ν Kinemetric viscosity of air (15×10–6m2s–1)
θ Angle of reflection 
ρ Density; ρ0 denotes value in air where ambiguity might otherwise arise (kgm–3)
ρe Effective density of porous absorber (kgm–3)
ρf Density of porous absorber’s fibres or grains (kgm–3)
ρm Bulk density of porous absorber (kgm–3)
σ Flow resistivity (MKS rayl m–1)
σs Flow resistance (MKS rayl)
τ Relaxation times (s)
ω Angular frequency (s–1)
ψ Angle of incidence
Λ Viscous characteristic dimension for porous absorber modelling (m)
Λ′ Thermal characteristic dimension for porous absorber modelling (m)





Introduction

The sound that is heard in most environments is a combination of the direct sound 
straight from the source or sources and the indirect reflections from surfaces and other 
objects. For instance, in room acoustics, both the direct sound and the reflections 
from the walls, ceiling and floor are key in determining the quality of the acoustic. 
To take another example, outdoors, the reflection from the ground can significantly 
reduce noise at certain low frequencies. Hence, one of the central topics in acoustics 
is how to manipulate these reflections that affect the way the sound propagates, and 
is ultimately perceived.

Sound striking a surface is transmitted, absorbed or reflected; the amount of 
energy going into transmission, absorption or reflection depends on the surface’s 
acoustic properties. The reflected sound can either be redirected by large flat surfaces 
(specularly reflected) or scattered by a diffusing surface. When a significant portion 
of the reflected sound is spatially and temporally dispersed, this is a diffuse reflection, 
and the surface involved is often termed a diffuser. Figure 0.1 illustrates temporal and 
spatial characteristics of absorbing, specularly reflecting and diffusing surfaces, which 
form the acoustical palette. In addition to the surface types shown in the figure, there 
are also hybrid surfaces, which can both absorb and diffuse to varying degrees.

For over 100 years, since the founding of architectural acoustics by Sabine, there 
has been considerable effort devoted to studying surface absorption. Over this time, a 
considerable library of absorption coefficients has been tabulated based on accepted 
standards of measurement and a reasonable understanding of how absorbers should 
be designed and applied has been achieved. This development continues, and in recent 
decades many innovative absorber designs have been developed, and new ways to 
predict and measure absorptive materials have been found. For noise control, the 
focus of attention is naturally on absorbers to remove energy, however, in architectural 
acoustics, both absorbers and diffusers have a role in creating a good acoustic. 
However, significant scientific knowledge about the role of scattering (diffusely 
reflecting) surfaces has only been developed much more recently. Over the past 30 or 
so years, significant research on methods to design, optimize, predict, measure and 
quantify diffusing surfaces has resulted in a growing body of scientific knowledge and 
understanding. All these issues, and many more, are covered in this book.

Good architectural acoustic design requires the right room volume, the right room 
shape and surface treatments, utilizing an appropriate combination and placement 
of absorbers, diffusers and flat surfaces. Architectural acoustic spaces can be loosely 
divided into sound production, sound reproduction and noise control environments.

An example of a sound production room is the performing arts facility, such as 
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concert halls for classical music or a theatre for speech. The room acoustic contributes 
greatly to the perceived sound of the music or speech. The arrival time, direction and 
temporal density, and level of the early reflections, coupled with the balance of the early 
to late energy, decay time, temporal and spatial density of the late reflections, define 
the quality of sound that is heard and the degree of envelopment a listener experiences. 
In large sound production rooms, reflection and diffuse reflection are the primary 
acoustic tools. This is schematically illustrated in Figure 0.2. Absorption may be used 
to control reverberance, but the unavoidable absorption due to paying customers must 
also be considered.

In contrast, the acoustics of sound reproduction rooms, like recording studios and 
home theatres, should be neutral. All of the spectral, timbre and spatial information is 
pre-recorded on the playback media, and the reproduction room is only there to allow 
a listener to hear what has been recorded, as it was recorded. In a sound reproduction 
room, absorption and diffuse reflection play a key role, and specular reflection is a 
minor contributor. This is illustrated in Figure 0.3. Absorption and diffusion are used 
to control the coloration that would otherwise occur in the space from early arriving 
reflections and low frequency modes.

Figure 0.1 The temporal and spatial characteristics of absorbing, specularly reflecting 
and diffusing surfaces.
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In noise control situations, like gymnasiums, swimming pools and factories, the 
objective is simply to reduce the reverberance and sound level. This might be done 
to reduce sound levels to prevent hearing damage or to improve the intelligibility of 
speech. Uniform distribution of absorption is the primary acoustic tool, and specular 
reflection and diffuse reflection have more minor roles. This is illustrated in Figure 0.4. 
(It has been suggested that diffusers can play a useful role in disproportionate spaces, 
but then the figures are all generalizations of the true situation.)

Surface acoustic treatment also plays an important role outdoors. For instance, the 
absorption of the ground can have a significant impact on sound levels from ambient 
noise sources, such as roads and industrial premises. The treatment of noise levels might 
involve the use of noise barriers, and these might be treated with absorption, or less 
commonly, diffusers to reduce the noise levels.

This introductory description has sketched out a few of the issues concerning where 
and why absorbers and diffusers are applied. More detailed descriptions can be found 
in Chapter 1 for absorbers and Chapter 2 for diffusers. The following section, however, 
tries to give an overview of the relative merits of absorption and diffuse reflections.

Absorption Diffuse reflection

reflection

Sound
production

Specular

Figure 0.2 The relative importance of three acoustic treatments for sound production 
rooms such as concert halls, recital halls, auditoria, theatres, conference halls, 
courtrooms and worship spaces.
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Specular

Figure 0.3 The relative importance of three acoustic treatments for sound reproduction 
rooms such as recording and broadcast studios, video conferencing rooms and 
home theatres.
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Absorption versus diffuse reflections

Both absorbers and diffusers can be used to prevent acoustic distortion. For example, 
both can be effective in controlling echoes, coloration and image shift, which would 
otherwise be caused by strong reflections. This raises the question as to which is the 
best treatment in which situation.

Whether absorbers or diffusers are better depends to a considerable degree on other 
acoustic factors, primarily on whether a decrease in reverberation and/or sound level 
is desirable. If a wall is causing an echo or coloration problem, and the designer wishes 
to conserve the reverberation time and sound energy in the space, then a diffuser is 
the best solution. The diffuser is placed on the wall to disperse the reflection and to 
reduce the distortion without removing sound energy from the space. For this reason, 
in concert halls, where acoustic energy is at a premium, diffusers are to be preferred. In 
smaller rooms, say a lecture theatre, where intelligibility is important, a balance must 
be reached in which absorption is used to adjust the reverberation time and level, and 
diffusers are used to ensure that early reflections, which can constructively support 
speech, do not produce distortion. When reflections cannot be constructively used for 
intelligibility, then these reflections can either be absorbed, if it doesn’t make the room 
too dead, or diffused, thereby improving ambiance and coverage.

In critical listening rooms, a mixture of absorbers and diffusers is used to control 
the acoustics of a space. Treatment is placed to control first order reflections. When 
absorbers are used, the sonic images forming the soundstage are points in space. 
When diffusers are used, these images take on a more natural width and depth. Which 
material is correct, absorber or diffuser, is to a certain extent a matter of personal 
taste. If all the treatment is absorption, then the room turns out to be rather dead. 
While some people favour this for mixing audio, others do not, and for a listening 
room a very absorbent environment is not best. Consequently, if some liveliness is to 
be left in the room, a combination of absorbers and diffusers must be used. Current 
psychoacoustical research in multi-channel surround listening rooms indicates the im-
portance of generating lateral reflections to enhance envelopment, using single plane 
diffusers on side/rear walls and ceiling. Broad bandwidth absorption is most effective 
on the front wall and in corner locations. To provide low frequency modal control both 

Absorption Diffuse reflection

reflection

Noise
control

Specular

Figure 0.4 The relative importance of three acoustic treatments for noise control such as for 
factories, gymnasiums, swimming pools, libraries, atria and road side barriers.
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absorbers and diffusers require considerable depth to work, and the depths of acoustic 
treatments are often limited, because of space constraints and cost. Because of this, 
resonant absorbers requiring limited depth are often used to deal with the problems 
in a space efficient manner. In listening rooms, resonant absorbers provide effective 
low frequency control when placed in high pressure corner locations. For example, 
a membrane absorber might be used. The speed of sound in a porous absorber is 
lower than in air, and consequently a given thickness of absorber can work to a lower 
frequency than the same thickness of diffuser. For this reason, a partially absorbing 
diffuser, such as a hybrid structure, or a resonant absorber is usually favoured to treat 
low frequencies when space is a premium.

Diffusers have the advantage of generally being more robust than absorbers. Most 
absorber technologies involve fibrous materials, which do not stand up well to the 
effects of wind, rain and toxic environments. For example, in railway stations or on 
streets a large amount of particulate pollution may be generated, which over time can 
clog the pores of fibrous absorbents. There is a great risk with outdoor installations 
that fibrous absorbents will wash away over time. Recently, recycled, sintered glass 
absorbers have shown promise in both indoor and outdoor applications. Consequently, 
if it is possible to meet the acoustic requirement using a hard diffuser, it is possible 
to generate a much more robust treatment than with many absorbents. Alternatively, 
fibreless absorbers, such as microperforated absorbers, might offer a solution.

Both absorbers and diffusers have a role to play in good acoustic design. They have 
a complementary function, which means when they are used appropriately, better 
acoustics can be achieved.





1 Applications and basic principles 
of absorbers

This chapter is intended to introduce the fundamental principles of absorption, along 
with a basic explanation of the physics behind the absorption processes and some 
fundamental formulations which will be used in later chapters. Since the book is 
aimed at practitioners and researchers, most chapters begin with an application-driven, 
qualitative description, followed by a quantitative description of the technology and 
design. Following this type of philosophy, this introductory chapter on absorption is 
written from an application or case study perspective. The style is intended to make the 
more theoretical sections more palatable. Rather than start with a section labelled ‘A 
little light mathematics’ – which in most books is anything but light – the mathematical 
explanations will be formed around application examples. The chapter will also 
introduce some of the issues concerning the design, prediction and measurement of 
absorbers that will be treated in more detail in future chapters.

This chapter naturally introduces principles of airborne acoustics related to absorbers, 
such as some key issues in room acoustics. Readers familiar with these principles 
can skip these sections. Readers very unfamiliar with the subject should refer to the 
appropriate references. The first application example concerns the control of rever-
berance.

1.1 Reverberation control

Readers should be familiar with excessively reverberant spaces; this might be a restau-
rant or railway station, where the sound echoes around the space making it noisy and 
difficult to communicate. In these types of spaces, people tend to slow down their 
speech, talk louder and try to pronounce words more precisely in an effort to make the 
received speech intelligible. For some reason, many restaurateurs seem to think that to 
create the right atmosphere, it is necessary to make speech communication virtually 
impossible. The issue here is reverberation.

Reverberation is the decay of sound after a sound source has stopped and it is a key 
feature in room acoustics.1 Reverberation is most audible in large spaces with hard 
surfaces, such as cathedrals, where the sound echoes around long after the sound was 
emitted from the source. In small spaces, with plenty of soft, acoustically absorbent 
materials, such as living rooms, the absorbent materials quickly absorb the sound 
energy, and the sound dies away rapidly. When people talk about rooms being ‘live’ or 
‘dead’, this is usually about the perception of reverberance.

The amount of reverberation in a space depends on the size of the room and the 
amount of sound absorption. The solution to the reverberant restaurant is to add 
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acoustic absorbers. This will reduce the reflected sound energy in the room and so 
reduce the reverberance and sound level. Problems arise in dining rooms, because any 
surfaces close to eating or preparation areas need to be robust and washable, and many 
acoustic absorbers are soft and so are inherently unsuitable. Consequently, the best 
place for absorption is the ceiling or high up on the walls out of the way.

Figure 1.1 shows a large feature wall covered in an absorbing wood finish in an 
atrium. This treatment has the advantage of being architectural, yet absorptive, so 
it does not visually impose on the space as being an add-on treatment. Chapters 5 
and 6 discuss innovative and more mundane absorber technologies. A less expensive 
solution would be standard absorbent ceiling tiles made out of compressed mineral 
wool, mounted in a T-bar grid; but this is not as elegant. The visual quality of acoustic 
treatment is extremely important to architects and absorbers need to fit within a design 
scheme rather than look like obvious add-ons. Consequently, one of the drivers for 
developing new acoustic materials is visual aesthetics, which is one reason why there 
is great interest in microperforated absorbers (see Section 6.2.4). Microperforations or 
microslits are barely visible at normal viewing distances and can be applied to wood and 
light transmitting plastics. The plastics provide absorption while maintaining visibility 
in projects with large amounts of glass, like atria. Microperforated wood veneers allow 
architects to use absorbing wood panelling in conjunction with traditional reflective 
wood panelling. Alternatively, acoustic plasters provide absorbing walls and ceilings 
that resemble traditional plaster or painted dry-wall.

In recent years, the issue of sustainability has become increasingly important. For 
this reason there is great interest in porous absorbents made from recycled materials, 
as discussed in Section 5.2.3. The need for thermally efficient buildings also poses a 

Figure 1.1 Perforated, absorptive wood panelling covering the entire feature wall opposite 
an exterior glass wall (out of shot) in Morgan State University in Baltimore, 
MD. (Acousticians: Shen, Milsom and Wilke, Ballston, VA. Photo courtesy of 
RPG Diffusor Systems, Inc.)
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challenge to acoustic consultants. More hard surfaces are being left exposed to exploit 
the thermal mass of ceilings and floors. These surfaces were traditionally covered 
with absorption to control reverberance. Therefore, new methods for controlling 
reverberance and sound reflections grazing across ceilings are now required.

Getting the correct amount of reverberation in a space is vital to the design of most 
rooms, whether the aim is to make music sound beautiful, to make speech intelligible, 
to reduce noise levels or simply to make a space a pleasant place to be in.

An extreme example of the use of absorption is the anechoic chamber, which is an 
acoustically dead space, an example of which is shown in Figure 1.2. This is a room 
where, above a certain cut-off frequency, there are no reflections from the walls, floor or 
ceiling. This means it is ideal for testing the response of diffusers, because the room does 
not affect the measurements. Anechoic chambers are also immensely quiet. To remove 
reflections from the boundaries, every surface is covered in absorbing wedges made of 
open-cell foam or fibreglass. Forming the absorbent into wedges reduces reflections 
from impedance discontinuities at the boundaries. Some have also made chambers 
from multiple layers of flat absorbents, where a gradual change in impedance is used 
to prevent strong reflections from the flat absorbent (see Section 5.5.4).

Another extreme example is the non-environment, which are acoustically (almost) 
dead spaces designed for control rooms.2 The room has highly absorbing, broadband 
absorption on the side walls, rear wall and ceiling. The front wall is hard, diffusing, 
and the loudspeakers are flush mounted into the front wall. The floor is also hard and 
reflective. The idea is to replicate (near) free field conditions, to enable the monitoring 
of the direct sound and nothing else. Advocates of non-environments prefer certainty 
and detail over the reverberance and the more natural sound that is found in more 
conventional control rooms, examples of which can be found in Chapter 2.

Returning to more general reverberation, the primary technique for control is 
absorption. In discussing the design, application and measurement of absorbers, it 
is necessary to understand a statistical model of sound within an enclosure.1,3 This is 
discussed in the next section.

Figure 1.2 The anechoic chamber at the University of Salford, UK.
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1.1.1 A statistical model of reverberation

A simple model of sound propagation in a room is of particles of energy bouncing 
around the room in an analogous way to a snooker ball bouncing around a billiard 
table. The room can be characterized by the impulse response, an example of which 
is shown in Figure 1.3. The impulse response is a pressure versus time graph showing 
the response at a receiver position when somewhere else in the room a short impulse 
is created. For example, a balloon burst or a starting pistol might generate the short 
impulse, and the response might be measured with a microphone. First of all the direct 
sound from the source to receiver is received. Soon after, a series of reflections arrive, 
the level of these reflections generally decaying with time, due to absorption at the room 
surfaces. The effects of the boundaries dominate the behaviour of sound in rooms, and 
it is at the boundaries where absorption is normally found. (Only in large rooms does 
absorption by the air become important.) There is an increase in reflection density with 
time, and when the reflections become very dense this is termed the reverberant field. 
The energy of the reverberant reflections around the room is roughly constant and can 
be readily predicted, provided the sound field is diffuse.4

The reverberation time T60 measures the time taken for the sound pressure level to 
decay by 60 dB when a sound stops. From the impulse response, the Schroeder curve 
must be calculated first by backwards integration, before evaluating the reverberation 
time.5 Sabine showed that the reverberation time could be calculated from the room 
volume and absorption by:6

Figure 1.3 The generation of an impulse response in a room, and a typical example impulse 
response from a concert hall.
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 (1.1)

where V is the room volume; c the speed of sound, and A the total absorption of all 
room surfaces.

The total absorption of the room can be calculated from the individual absorption 
coefficients of the room surfaces, using the following expression:

 (1.2)

where Si is the surface area of the i th surface element in the room; S is the total surface 
area of the room; αi the absorption coefficient of the i th surface element in the room, 
and α− the average absorption coefficient of the room.

The absorption coefficient of a surface is the ratio of the energy absorbed by the 
surface to the energy incident. It typically lies between 0 and 1, which represent non-
absorbing and totally absorbing surfaces, respectively. Values greater than 1 are often 
found in random incidence measurements, although theoretically impossible. This 
usually occurs due to diffraction/edge effects – see Chapter 3 for further details of the 
measurement methods. The absorption coefficient can be defined for a specific angle 
of incidence or random incidence as required.

Equations 1.1 and 1.2 form the basis for the standard method for measuring a 
random incidence absorption coefficient. The reverberation time in a reverberation 
chamber is measured with and without the test sample. The test sample adds absorption 
to the room and so reduces the reverberation time. From the change in reverberation 
time, the absorption coefficient can be obtained. This technique is described in detail in 
Chapter 3. Chapter 12 examines how to use this measurement data in room predictions 
and geometric models.

For large rooms, the absorption of air should also be accounted for. The total air 
absorption Aair in a room of volume V is given by:

 
(1.3)

where m is given in Table 3.1 or formulations can be found in ISO 9613-2.7

To allow for air absorption in the reverberation time predictions, the additional 
absorption calculated from Equation 1.3 should be added to the denominator of 
Equation 1.1 to give:

 (1.4)

Sabine’s formulation does not correctly predict the reverberation time for rooms with 
a large amount of absorption. Over the years many new formulations have been 
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developed, the most popular of these being the Eyring equation,8 also known as the 
Eyring–Norris equation:

 (1.5)

where ln() signifies the natural logarithm. A little-used formulation, but one needed 
in Chapter 12, when the translation between coefficients measured in the rever-
beration chamber and those used in geometric models is considered, is the Millington 
equation:9

 (1.6)

Alternate reverberation time equations are the topic of considerable interest. Many 
formulations attempt to be catch-all equations for reverberation time estimation, but 
it is often difficult to know a priori, whether a formulation will work in a particular 
room. It is conceivable that better equations can be developed by analyzing rooms in 
more detail (such as surface size and orientation statistics, and absorber and diffuser 
distribution), but any such attempt would require a computer model of the room to 
be made for the analysis. As geometric models exist (ray tracing and variants thereof ), 
where the impulse response of a room can be predicted, there is little need nowadays 
to search for ever more complex reverberation time formulations.

The relative advantages of the reverberation time formulations given in Equations 1.1, 
1.5 and 1.6 will become important when discussing absorption measurement in Chapter 
3. In recent years, researchers have also been revisiting alternative reverberation time 
formulations in an effort to improve the accuracy of predictions in geometric room 
acoustics models; this is discussed in Chapter 12. Using geometric models for rever-
beration time estimation also requires diffuse reflections to be taken into account, 
which is still the subject of standardization and investigation, as discussed in Chapters 4 
and 12.

Despite many studies, the application of absorption coefficients in computer models 
is fraught with difficulty, mainly because it is difficult to know what the absorption 
coefficients are for surfaces, and this is a key input to the model. The accuracy of 
absorption coefficients is particularly important when a significant portion of the 
surface area of a room is very reflective, for instance if much of the room is made from 
concrete, glass or wood. Furthermore, when the absorption is restricted to one plane, 
as is typically the case in concert halls, swimming pools, sports halls and classrooms, 
this means that the late decay is very dependent on the exact value of the absorption 
coefficient selected for the reflective surfaces. Even in a room entirely made of one 
material, such as a room made only of concrete, accurate absorption coefficients are 
critical. Changing the absorption coefficient of the concrete from 0.02 to 0.01 in 
such a room will double the reverberation time (except at higher frequencies where 
air absorption will dominate in a large room). In other words, when a hard material 
is dominating, a very accurate estimate of the absorption coefficient is necessary 
for purely numerical reasons. Consequently, while there are tables of absorption 
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coefficients in the literature, and in Appendix A of this book, these cannot be blindly 
applied. The measured absorption coefficients can vary greatly from laboratory to 
laboratory, even for the same sample, as Figure 3.6 shows. Furthermore, for some 
products the absorption can vary greatly from manufacturer to manufacturer – an 
example being carpets as discussed in Chapter 5. Consequently, in situ methods for 
measuring absorption both within rooms and for outdoor applications are of interest, 
and these methods are discussed in Chapter 3.

The reverberation time formulations are statistical models of room acoustic behaviour, 
and are only applicable where there are a large number of reflections and the sound 
field is diffuse. For instance, at low frequencies, the modal behaviour of the room makes 
the sound field non-diffuse. Consequently, there is a lower frequency bound on the 
applicability of statistical absorption formulations. The lower bound is usually taken 
to be the Schroeder frequency10 given by:

 (1.7)

Although this formal limit has been known for many years, it does not prevent many 
practitioners, standards and researchers still defining and using absorption coefficients 
below the Schroeder frequency, as it is convenient, even if not strictly physically correct. 
Geometric models are also used below this limit, although they have difficulties 
predicting at frequencies where there is a low modal density, where correct modelling 
of phase is needed.

1.2 Noise control in factories and large rooms with diffuse fields

The noise levels within working environments must be controlled to allow safe working, 
as excessive levels can cause hearing loss. Consequently, there are regulations to limit 
the exposure of workers. There are several methods for controlling noise exposure. The 
most efficient of which is usually to control the noise at the source, but this may not 
always be possible. Another technique is to reduce the reverberant sound level within 
a space. This is only effective if the reverberant field makes a significant contribution 
to the noise level. For instance, the approach is ineffective if the worker is close to a 
noisy machine, because the direct sound will dominate. The reverberant field level is 
reduced by the addition of absorption and hence the noise exposure is decreased by 
typically up to 3–4 dB(A). Typically, porous (or bulk) absorbers, such as mineral wool, 
are used as it is inexpensive, light and effective.

The porous absorber often has to be protected from dust, and so is frequently 
wrapped in plastic, but this decreases high frequency absorption. There are situations 
where the absorbent needs to be washable, and there are a few types of porous absorber 
that achieve this. There are also situations where the absorbent needs to be fibreless 
to prevent contamination. Chapter 5 discusses the design and modelling of porous 
absorbents, including some innovative materials. Chapter 6 includes sections on 
microperforation, which is one way of making fibreless absorbers. Porous absorbers 
are only effective at mid- to high frequencies, but this is where the ear is most sensitive 
and consequently where noise control is most needed in the working environment.

Factories tend to be very disproportionately dimensioned; they have very low 
ceilings compared to their widths and lengths. This means that the simple diffuse field 
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equations, such as Equation 1.1, are unlikely to work. For statistical room acoustics 
to hold, the space needs to be diffuse. A diffuse field is one where there is uniform 
reflected energy density across the whole room, and all directions of propagation are 
equally probable. There are many reasons why real rooms do not have even energy 
density and equally probable propagation directions:

1 At low frequencies there are standing wave modes similar to those found in ducts 
(see Section 1.3).

2 If the room’s dimensions are very dissimilar, there is a tendency to get different 
reverberation times in different directions as happens with many factories. Sound 
will decay faster if it is propagating perpendicular rather than parallel to the floor, 
as the perpendicular propagating sound will reflect more often, and it is at the 
reflections that most absorption occurs.

3 The absorption in a room should ideally be evenly distributed across all surfaces. 
For many cases this is not true: the factory absorption might all be on the ceiling; 
a swimming pool may also have all the absorption in the ceiling; a reverberation 
chamber with a test sample has all of the absorption on the floor; and a classroom 
usually has absorption on the ceiling and floor, but not the walls.

4 If the room has a distinctive shape, e.g. cylindrical, the curved surfaces can focus 
sound to a point, like a curved mirror does with light. The result will be an uneven 
sound field (see Section 2.9 for solutions involving diffusers).

The relevance of the diffuseness of the space to absorption technologies is as follows. 
The absorption coefficient of a building element will be measured in a reverberation 
chamber, using Sabine’s reverberation time formulation (see Section 3.4). When the 
absorption is applied, however, the acoustic conditions might be dramatically dif-
ferent, for instance non-diffuse, which means that the anticipated changes in noise 
levels and reverberance might not occur. The absorption might be more or less effective 
than predicted; this is discussed in Chapter 12. A special example of the problem is 
considered in Sections 3.4.1 and 7.1 when auditorium seating is considered. Chapter 12 
discusses the application of absorption coefficients to room acoustic models, where the 
issue of non-diffuseness is again important.

1.3 Modal control in critical listening spaces

Small rooms, like recording/broadcast studios, home theatres and conference rooms, 
usually suffer from problems due to low frequency modes. At low frequencies, the 
standing wave modes of the room are separated in frequency. Figure 1.4 shows the 
frequency response for a small room. The frequency response is uneven, meaning that 
some frequencies are emphasized, where mode(s) are strong, and some suppressed, 
where mode(s) are weak, leading to coloration of the received sound. This is most 
critical for music applications, particularly with the increasingly widespread use of 
sub-woofer technology and reproduction of modern music with high bass content. 
Common solutions include choosing the room dimensions, loudspeaker and listening 
positions correctly to flatten the frequency response of the room as much as possible 
and avoid degenerate modes.11 Even when the room dimensions have been carefully 
chosen, however, the frequency response of the room will still be uneven and acoustic 
treatment is needed.
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Particularly prominent modes are usually treated with bass absorption, often referred 
to as bass traps or bins. (It is not usually possible to treat this problem with diffusion 
because the sizes of the diffusers become prohibitively large, although Section 2.2.3 
discusses a case where this has been done.) Porous absorbers are not usually used, as 
they would have to be extremely thick to provide significant bass absorption. Porous 
absorption is most effective when it is placed at a quarter wavelength from a room 
boundary, where the particle velocity is maximum. For a 100 Hz tone, this would be 
roughly 1 m from the boundary. Placing porous absorbers directly on a room boundary, 
while the most practical, is not efficient, because the particle velocity at a boundary is 
zero. Too often, many people place porous absorption in corners of rooms thinking this 
will absorb sound, since all the modes have a ‘contribution’ in the corners. However, 
while the modes have a maximum pressure in the corners, the particle velocity is very 
low and so the absorption is ineffective. For these reasons, resonant absorbers are 
preferred for treating low frequencies.

Resonant absorbers are mass spring systems with damping to provide absorption at 
the resonant frequency of the system. The mass might come in the form of a membrane 
made of plywood or mass-loaded vinyl. Alternatively, the vibrating air in the neck of a 
hole might form the mass, as is the case for a Helmholtz resonant absorber. The spring 
usually comes from an air cavity. Damping is most often provided by sound being 
forced through a porous resistive material: mineral wool, fibreglass or acoustic foam.

The problem with resonant absorbers is that they usually only provide a narrow 
bandwidth of absorption. To cover a wide bandwidth, a series of absorbers are required, 
each tuned to a different frequency range. Alternatively, double-layered absorbers can 
be used, but are expensive to construct. In recent years, a new resonant absorber has 
been constructed where the vibrating mass is a metal plate and the spring is formed 
from foam or polyester, and this provides absorption over a broader bandwidth.

Resonant absorbers are discussed in Chapter 6, including microperforated absorbers, 
which are currently attracting considerable interest. An alternative, but expensive 
solution to bass absorption is to use active surfaces. Active absorbers have much in 
common with active noise control systems, and are discussed in Chapter 13.
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Figure 1.4 Low frequency response of a small room.
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One problem with low frequency modal control is knowing how much resonant 
absorption to use. Although the theories set out in Chapter 6 allow the performance 
of Helmholtz absorbers to be estimated, the meaning and interpretation of absorption 
coefficients at low frequencies is not straightforward. (Even more tricky is the lack of 
good prediction models for membrane absorbers, but that is another story.) At low 
frequency, the sound field is not diffuse, and consequently the effect that an absorber 
has is not calculable through simple statistical laws. Often, practitioners pragmatically 
apply diffuse field theory anyway; a more complex, but exact approach, would use a 
wave based modelling method such as finite or boundary element.

1.4 Echo control in auditoria and lecture theatres – basic 
sound propagation models

A late arriving reflection appears as an echo, if its level is significantly above the general 
reverberation level. In a large auditorium, the reflection from the rear wall is a common 
source of echo problems for audience members near the front of the stalls (main level 
seating) or performers on the stage. Echoes are very likely if the rear wall forms a 
concave arc, which focuses the reflections at the front of the hall. The physical and 
subjective processes are the same as for echoes heard in mountain ranges or in cities 
with large building facades. One technique for removing the echo is to apply absorption 
to the rear wall. The absorption attenuates the reflection making it inaudible as a 
separate acoustic source. Figure 1.5 shows the Royal Festival Hall where such a solution 
was used when it was first built. The problem with using absorption in auditoria is 
that it removes acoustic energy, which is at a premium in large spaces for orchestral 
performance, and so diffusion is currently the preferred solution (see Section 2.1).

For smaller spaces, where absorption is being used anyway for reverberation control, 
absorption is a possible treatment for echo problems. The absorption needs to act 

Figure 1.5 The Royal Festival Hall, London. (Photo courtesy of Bridget Shield.)
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at mid- to high frequencies, as echoes are most notable for directional instruments. 
Consequently, a layer of porous absorber can be used. Alternatively, hybrid surfaces 
controlling reverberation at low to mid-frequencies, but providing diffuse reflections 
at higher frequencies might be used; these are discussed in Chapter 11.

Flutter echoes can occur in spaces with two large parallel walls. The regular pattern 
of reflections caused by sound bouncing back and forth between the parallel walls 
causes coloration. By coloration, it is meant that the frequency response of the sound 
is detrimentally altered. If you go into many stairwells with parallel walls and clap your 
hands, a high frequency ringing will be heard; this is the flutter echo. Flutter echoes 
are common in lecture theatres. One remedial measure is to apply absorbent to at least 
one of the two parallel walls to absorb the reflections. Again, a relatively thin layer 
of porous absorber can achieve this, as it is mid- to high frequency treatment that is 
needed. Alternatively, diffusers are sometimes preferable, because they control the flutter 
echo, while also uniformly dispersing the sound for better coverage and intelligibility.

Porous absorbers are any material where sound propagation occurs in a network 
of interconnected pores in such a way that viscous effects cause acoustic energy to be 
dissipated as heat. Common examples are mineral wools, fibreglass, open cell foams, 
acoustic tiles, carpets and curtains. Current concerns about sustainability have also 
led to porous absorbers being constructed from recycled materials. To gain a proper 
theoretical understanding of porous absorbers, it is necessary to understand the theories 
of sound propagating in a medium. Some basic models of sound propagation, which 
are the basis for much of the absorber and diffuser modelling in the book, are presented 
in the next section.

1.4.1 Sound propagation – a wave approach

To understand and design absorbers, it is necessary to have a basic understanding of 
the terminology used and the fundamental mathematical constructs used for sound 
propagation. This section introduces some basic constructs, concepts and terms.

A complex number representation of waves will be adopted throughout the book. 
The pressure of a plane wave propagating in a direction r is:

 
(1.8)

where k = {kx, ky, kz} is the wavenumber (∝ propagation constant) with kx being the 
component in the x direction, k2 = |k|2 = kx

2+ ky
2+ kz

2; A is a constant related to the 
magnitude of the wave; r = {x, y, z} is the location of the observation point; t is time, and 
ω = 2πf = kc is the angular frequency, where f is the frequency and c the speed of sound.

The same conventions as used in Reference 3 are being adopted, so this is useful 
background reading for those who find this introduction too brief. The time dependence 
is e+jωt. Unfortunately, there is no standard convention for the sign of this time 
dependence, so some of the literature uses a negative power in the exponential, leading 
to equations and results which are complex conjugates of those given in this book. 
Some texts and papers used a propagation constant, γ = jk, in their equations instead 
of the wavenumber, but this will be not often be used in this book.

Consider a plane wave propagating through an acoustic medium; this could be air 
or a porous absorber. The plane wave will be taken to propagate in the x-direction for 
convenience. The pressure and particle velocity are given by:

)().(),( zkykxktjtj zyxAeAetp == rkr



18 Applications and basic principles of absorbers

 (1.9)

 (1.10)

where ρ is the density and c the speed of sound of the acoustic medium. The ratio of 
pressure to velocity gives the characteristic specific acoustic impedance of the medium, zc:

 
(1.11)

The characteristic acoustic impedance is a very useful property of the material when calcu-
lating the transmission of acoustic waves within and between different acoustic media.

The characteristic impedance of plane waves in air is purely real with a value of 
about 415 MKS rayls. In an acoustic medium it will be complex, with a characteristic 
resistance and reactance, which are the real and imaginary parts of the impedance re-
spectively. The characteristic impedance is analogous to the characteristic impedance 
of an electronic transmission line.

Once the characteristic impedance and wavenumber within an acoustic medium are 
known, it is possible to predict the sound propagation. While it is possible to char-
acterize a medium with the characteristic impedance and the wavenumber, it is also 
possible to use two other variables, the effective density ρe and bulk modulus Ke. The 
term effective is used to signify that this is the density experienced by the acoustic waves 
rather than the more normal definition of mass divided by volume. The bulk modulus 
is the ratio of the pressure applied to a material to the resultant fractional change in 
volume it undergoes. It is the reciprocal of the compressibility. For a porous absorber, the 
effective density and bulk modulus can be related to the characteristic impedance and 
wavenumber by the following formulations. The characteristic impedance is given by:

 
(1.12)

and the propagation wavenumber by:

 (1.13)

Where possible, this book will work with the impedance and wavenumber, as multiple 
inter-related parameters are a potential source of confusion. Some porous absorbent 
prediction formulas, however, explicitly give values for the bulk modulus and the 
effective density, so these terms will sometimes be met in the literature.

1.4.2 Impedance, admittance, reflection coefficient and absorption 
coefficient

The effect that a surface has on an acoustic wave can be characterized by four inter-
related acoustic quantities: the impedance, the admittance, the pressure reflection 
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coefficient and the absorption coefficient. The first three (impedance, admittance and 
pressure reflection coefficient) give information about both the magnitude and phase 
change on reflection. The absorption coefficient does not contain phase data, but only 
gives information about the energy change on reflection.

Understanding these four acoustic quantities is fundamental to understanding 
absorbing materials. These will now be defined mathematically by considering a wave 
propagating between two media. Consider a plane wave incident at an angle to a 
boundary between two acoustic media at x = 0, as illustrated in Figure 1.6. A simple 
model for a porous absorber assumes that it behaves as an acoustic medium like air, 
only with a different speed of sound c1 and density ρ1. The incident pi, reflected pr and 
transmitted pt pressures are given by:

 (1.14)

 (1.15)

 (1.16)

where Ai, Ar and At are the magnitudes of the plane waves incident, reflected and 
transmitted, and the angles are defined in the figure.

Applying continuity of pressure gives the following relationship:

 (1.17)

This must be true for all times and for all values of y as this was a plane wave. Con-
sequently, a relationship relating the angles of propagation is obtained, more commonly 
known as Snell’s law:

 (1.18)

 (1.19)

The behaviour of the sound wave therefore depends on the relative values of the speeds 
of sound in the two media. For most absorbents, the speed of sound is much less than 
that in air. Consequently, the angle of propagation in the medium is smaller than in 
the air. In fact for many absorbents, the angle of propagation can be assumed to be 
normal to the surface, i.e. φ→0.
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The pressure reflection coefficient, R, (sometimes referred to as a reflection factor) 
gives the ratio of the reflected and incident pressure, i.e.:

 (1.20)

Therefore, the pressure reflection coefficient includes both magnitude and phase 
information about the reflection of sound. There is also an intensity reflection 
coefficient, but this is not used in this book.

The need for continuity of particle velocity normal to the surface enables the 
derivation of an expression for the specific acoustic impedance of the surface. The rela-
tionships between pressure reflection coefficient and impedance will be used repeatedly 
in the book. For oblique incidence, these are:

 
(1.21)

 (1.22)

The admittance is the reciprocal of the impedance:

 
(1.23)

Often the surface admittance and impedance are normalized to the characteristic 
impedance of air, and these are denoted with a subscript of n.
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Figure 1.6 Sound hitting a surface.
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The surface impedance is often split into the real term (resistance) and imaginary 
term (reactance). In general, the real term of surface impedance is associated with 
energy losses, and the imaginary term with phase changes. So a simple inspection of 
the surface acoustic impedance gives more insight into the absorbing properties of a 
material than the absorption coefficient.

Remembering from Section 1.1.1 that the absorption coefficient, α, is a ratio of the 
absorbed and incident energy enables the following expression to be derived:

 (1.24)

where |R| is the magnitude of the pressure reflection coefficient.
The above formulations have assumed a plane wave case, however in certain cases, 

for example for a source close to a reflecting surface, then a spherical wave formulation 
is most appropriate. The F-term solution of Nobile and Hayek12 gives the velocity 
potential at a distance d above an impedance plane as:

 (1.25)

where r1 and r2 are defined in Figure 1.7. Q is the spherical wave reflection coefficient 
given by:

 (1.26)

where R is the plane wave reflection coefficient as previously used. So this asymptotic 
solution uses the plane wave solution plus a correction term. F is the boundary loss 
function given by:

 
(1.27)

where erfc() is the complementary error function and w is the numerical distance given 
by:

 (1.28)

21 R=

21

21

)(
r

eQ
r

ed
jkrjkr

+=

( )FRRQ += 1

)(1)(
22/1 jwerfcwejwF w=

( ){ }njkrw += cos22
1

Receiver 
Source r1 

 

r2 
d 

Figure 1.7 Geometry for spherical wave reflection coefficient.
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While many reflections strictly speaking should be modelled using spherical wave 
reflection coefficients, in reality, in many cases the extra complication of the above 
equations is unnecessary. For instance, in the reverberant field in rooms where the 
number of reflections is large, a plane wave coefficient is sufficient. In contrast, when 
considering grazing reflections from sources close to the ground outdoors, the spherical 
wave reflection coefficient should be used.

This section has described a number of key terms for sound propagation fundamen-
tal to absorber and diffuser modelling. These will be used throughout the theoretical 
sections of this book where prediction models are developed for both absorbers 
and diffusers. These terms are also used in Chapters 3 and 4 when measurements 
are considered. But for now, it is time for some light relief by returning to some ap-
plications.

1.5 Absorption in sound insulation – transfer matrix modelling

Porous absorbent material is widely used in sound insulation. Lightweight construct-
ions are often based on double leaf partitions with an air gap in-between, as shown 
in Figure 1.8. It is normal for the air gap to contain a porous absorber. The porous 
absorber is used to prevent a resonance of the air cavity. If cavity resonances are not 
removed by damping, at the resonant frequency sound will pass easier through the 
partitions, and so the sound insulation will be poorer. It is important that the absorbing 
material is lightly packed, otherwise it can form a vibration path bridging between 
the two partitions; this could greatly reduce the performance of the system. Many 
different porous absorbers will be effective in the partition; this is not the most critical 
application for the design of absorbents.

As the issue of transmission is being discussed, it seems appropriate to discuss the 
transfer matrix approach to modelling transmission through, and absorption from, 
porous and resonant absorbers. The transfer matrix approach is the basis for many 
of the prediction techniques given in Chapters 5 and 6. A similar process is used in 
transducer modelling, where the method is called a two port network.

1.5.1 Transfer matrix modelling

The transfer matrix approach to modelling sound propagation is a very powerful 
technique most often applied to porous absorption with and without membrane or 
perforated facings. It enables the surface impedance of single and multiple layers of 

purlin fibreglass

gypsum (plaster) board

Figure 1.8 Mineral wool in a partition.
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absorbent to be calculated. For instance, it enables the case of a rigidly backed porous 
absorbent to be considered. This is the most important acoustic case, because it repre-
sents an absorbent placed on a wall, floor or ceiling.

Consider the situation shown in Figure 1.9. It is assumed that only plane waves exist 
within the layers. It is further assumed that the propagation is entirely contained in the 
x-y plane. By considering the continuity of pressure and velocity at the boundaries, it 
is possible to relate the surface pressure of one layer to the next.

 

(1.29)

where pxi and uxi are the pressure and particle velocity at the bottom of the i th layer, 
for velocity this is defined to be in the x-direction; pxi+1 and uxi+1 are the pressure and 
particle velocity at the bottom of the (i + 1)th layer; pli and uli are the pressure and 
particle velocity at the top of the i th layer; di is the thickness of the layer i th layer; ρi is 
the density of i th layer, and kxi is the x-direction component of the complex wavenumber 
for the i th layer.

The component of the wavenumber in the x direction is calculated by considering 
Snell’s law (Equation 1.18):

 
(1.30)

Many porous absorbents have a small speed of sound in comparison to air, and so 
often kxi ≈ ki as φ ≈ 0.

Equation 1.29 is a recursive equation from which the pressure and velocity of any 
layer can be determined from boundary and incident sound wave conditions. Although 
this process can be used to determine absolute values for the pressure and velocity, 
the technique is most powerful in determining surface impedance values. The surface 
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impedance is calculated for the top of the i th layer, this is then used to calculate the 
impedance at the top of the (i + 1)th layer. The process is then repeated until all layers 
have been evalu ated. The relationship that enables this process, relates the surface 
impedance at x = xi+1 to the impedance at x = xi:13

 

(1.31)

where zsi is the impedance at x = xi; zsi+1 is the impedance at x = xi+1; ki is the wavenumber 
in the i th layer, and xi and xi+1 are defined in Figure 1.9.

To illustrate the application of Equation 1.31, consider the most common case, which 
is a rigidly backed single layer. In this case, zsi → ∞, and the equation reduces to give a 
formulation for the surface impedance of the rigid back absorbent as:

 (1.32)

1.6 Pipes, ducts and silencers – porous absorber characteristics

Air conditioning ducts and other pipelines are a common source of noise.14 The noise 
generated by fans, blowers and internal combustion engines can propagate along the 
duct with little attenuation and radiate from outlets and exhausts. In addition, breakout 
noise can radiate from the sides of the pipelines and ducts. The most effective treatment 
is to reduce the noise at the source, but where this is not possible, the application of 
absorbent material can be effective.

For pipelines internal treatment is not often possible, and in this case external lagging 
can be used to reduce breakout noise. The external lagging is often a combination of 
mineral wool and a heavy limp mass jacket made of metal, although the evidence is 
that foam is more effective. Below 300 Hz, the lagging of pipelines is not effective, 
and indeed treatment around 300 Hz can often result in increased noise breakout. 
References 14 and 15 give design charts and equations to enable the effectiveness of 
pipeline and duct lagging to be calculated, although the prediction can be inaccurate 
unless proper manufacturer’s data is known.

For ventilation ducts, internal lining of the duct is most effective and 2.5–5 cm thick 
linings are typically used. Internal duct liners are generally made of porous absorbent 
although the type of porous material is not that important from an acoustic perspective. It 
is often necessary to use a protective coating, which might be materials such as a spray-on 
polyurethane coating, impervious lightweight plastic sheet, neoprene or perforated 
metal. The protective coating can have a significant effect on the absorption obtained.

Porous absorbers are also used as part of silencers and mufflers used to attenuate 
sound within pipe work. It is important to know the environmental conditions that 
the absorbent will be subject to, both to be able to evaluate whether the material 
will be sufficiently robust overtime and not, for instance, become clogged, but also 
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because temperature and flow affect the acoustic properties of the material. In harsh 
environments, perforated or sintered metal is a good choice. In situations where sound 
pressure levels are very high, the non-linear behaviour of sound within the absorbent 
will need to be considered. Introducing a silencer will introduce a pressure drop, as 
it will somewhat inhibit the flow through the system, and this needs to be considered 
alongside the acoustic performance, size and cost.

Silencers come in three main forms: reactive, absorptive and a combination of 
reactive and absorptive. Reactive silencers change the cross-section of pipes to achieve 
attenuation at selective frequencies,15 and are commonly used on outlet exhausts in 
harsh environments, but because they do not feature acoustic absorption, they will not 
be discussed further. Absorptive or reactive/absorptive silencers, as the names imply, 
are of more interest because they remove sound energy using porous absorbents. The 
porous material will be most effective at mid- to high frequencies. Absorptive silencers 
are most useful where a minimum pressure drop is required, and so are commonly used 
in applications such as ventilation ducts, intake and exhaust ducts of gas turbines and 
access openings of acoustic enclosures. Figures 1.10 shows one of the most common 
types of parallel-baffle silencers, where the shaded regions are made of porous 
absorbent. The attenuation is proportional to the perimeter area ratio, P/A, where P is 
the lined perimeter and A the cross-section of the silencer. The porous material should 
have a low enough flow resistivity so the sound enters the absorbent, but not too low 
otherwise no dissipation occurs (flow resistivity is defined in the next section). The 
spacing between baffles should be less than a wavelength; above the frequency where 
the wavelength equals the baffle spacing the attenuation falls off quite rapidly. The low 
frequency performance is determined by the thickness of the baffles, with d ≈ λ/8 being 
optimal. Thickness rarely exceeds 200 mm, with thinner baffles usually producing more 
attenuation. Detailed design equations are given in Reference 15.

1.6.1 Characterizing porous absorbers

To theoretically model the sound propagation through a porous material, it is necessary 
first to have measurements characterizing the acoustic properties of the absorber as an 

d

Figure 1.10 A typical parallel-baffle absorptive silencer used in a ventilation system.
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acoustic medium. So far in this chapter, the wavenumber and characteristic impedance 
have been discussed, but these cannot be directly measured. There are other parameters 
which are needed by absorber designers. Given a piece of porous absorbent material 
to characterize, often a researcher would start by measuring the flow resistivity σ and 
porosity ε. The flow resistivity gives a measure of the resistance to flow that the porous 
absorber offers and porosity the amount of open volume in the absorber available to 
sound waves. Chapter 3 outlines measurement methods for obtaining these values, 
although for many porous absorbents it is possible to assume a porosity of 1. These are 
probably the two most important determining parameters for porous absorbents. Once 
the flow resistivity and porosity are known, it is then possible to get the characteristic 
impedance and wavenumber via empirical laws, such as those outlined in Chapter 5, 
and predict the absorption properties of the sample.

It is possible to go further and use a more refined model of porous absorbers, 
which need further measurements of properties (methods are given in Chapter 3). 
There are a variety of models in the literature, but the one outlined in Chapter 5 uses 
three additional parameters; two characteristic lengths and tortuosity. Measuring the 
characteristic lengths is somewhat problematic, but there are a variety of methods for 
getting the tortuosity accurately.

It is possible to directly measure the surface impedance, pressure reflection coefficient 
or absorption coefficient of a sample. This is often done in the development of pre-
diction models for absorbents. As mentioned previously, the absorption coefficient can 
be measured through a reverberation chamber method, but the absorption coefficient 
is often influenced by edge effects. Furthermore, it is not possible to get phase 
information from the reverberation chamber, and this is very useful in understanding 
how an absorber works or why a theory succeeds or fails. To get phase information, a 
measurement for a particular incident angle needs to be made. The easiest system is to 
measure the impedance in a tube, where only normal incidence plane waves exist. To 
get oblique incidence coefficients, it is necessary to use large samples in an anechoic 
chamber; the most common technique is a two microphone method, which is limited to 
homogeneous, isotropic, planar samples. All these techniques are discussed in Chapter 3.

1.7 Enclosures, barriers and roads

Enclosures might be used around a single machine to reduce noise, or they might be 
a personnel enclosure, a sealed room which workers go into to get away from noise. 
Issues such as access and ventilation must be considered, and the need for these can 
compromise performance. Enclosures should be lined with porous absorbents to reduce 
the build up of reverberant energy, which otherwise would compromise the sound 
attenuation.

Traffic is a major cause of noise problems, and although modern cars are quieter than 
their older ancestors, the increase in traffic levels has meant that average noise levels 
have not changed very much in recent decades. One possibility is to use porous asphalt, 
the properties of which are discussed in Chapter 5, to reduce noise. Another possibility 
is to use traffic noise barriers to reduce noise propagation from roads to neighbouring 
houses. However, double reflections from high sided vehicles enable some of the noise 
to bypass barriers, as shown in Figure 1.11a. Even more important, reflections from 
barriers on one side of the road can pass over barriers on the other side, as shown in 
Figure 1.11b. These additional reflections typically change sound levels by between 
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2 and 6 dB(A).16 One solution is to apply absorption as shown in Figure 1.11c. The 
problem with absorption is that it tends to wear badly under the harsh conditions 
of high winds, salt and water, which are common next to busy roads. Consequently, 
absorber performance is likely to decrease over time unless specialized and expensive 
durable absorbers are used.

Barriers also have a role indoors, for example office screens are used to give acoustic iso-
lation from noisy equipment, between workplaces and to slightly reduce the reverberant 
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Figure 1.11 Schematic illustrating absorbers and diffusers to reduce reflection problems 
with noise barriers.
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noise levels in open plan areas. However, barriers are often ineffective in a highly rever-
berant environment. The performance of indoor barriers can be improved by hanging 
absorptive baffles from the ceiling or by placing sound absorbing material directly on 
the ceiling.

1.8 Natural noise control

It is common to find grass or tree covered areas around major noise sources and opti-
mizing the natural features to maximize attenuation offers a sustainable solution to 
noise. Recent research findings have challenged the conventional wisdom that natural 
elements, such as trees, either on their own or with purpose built barriers, vegetation 
and ground, have no practical part to play in the controlled reduction of noise in the 
propagation path between source and receiver. Where space allows, the use of natural 
means (trees, shrubs and ground) rather than artificial barriers, has the advantage of 
contributing to other issues in sustainability such as: reducing air pollution; generating 
corridors to encourage walking and cycling; generating access to local green areas, 
and reversing the long term decline in wildlife habitats and populations. Chapter 5 
discusses how ground conditions affect noise levels outdoors, and how the absorptive 
behaviour of the ground is modelled. Chapter 7 examines the use of trees and shrubs 
to attenuate sound.

1.9 Hearing protection devices

Ear defenders are used to reduce noise exposure, although where possible it is better to 
control the noise at the source or along the path between the source and listener. They 
have cups which are designed to resist sound transmission, resting on cushions which 
should provide a comfortable and leak-free seal between the cup and the side of the 
head. Within the cup a cavity is formed, and unless absorption is provided within the 
cavity, there will be a build up of reverberant energy. Acoustic foam is most commonly 
used because it does not deteriorate in the warm and moist atmosphere next to 
the head.

1.10 Loudspeaker cabinets

Most conventional loudspeakers are mounted within cabinets to prevent sound gen-
erated by the rear of the driver interfering with that radiating from the front. The 
enclosure changes the behaviour of the driver, because the air cavity forms a compliance 
which alters the mechanical behaviour of the driver, and this must be allowed for in the 
loudspeaker design. An empty enclosure has a series of resonances, which means the 
effect of the cavity on the driver varies greatly with frequency. By placing absorption 
within the cavity, the resonant modes are damped and the sound quality improved 
because the effect of the enclosure is more even with respect to frequency. Usually it 
is sufficient to use a porous absorbent wadding which has relatively low resistivity, 
because it can fill the cavity. Some have used activated carbon within the cabinet, 
because as well as providing absorption, the sorption of air molecules on and off the 
surface of the carbon changes the compliance of the cavity. Section 5.2.9 discusses 
activated carbon further.
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1.11 Summary

This chapter has outlined some absorber applications, and touched on some of the 
issues that will be important in future chapters. It has also introduced some necessary 
mathematical principles. The remaining chapters concerning absorption are as 
follows:

• Chapter 3 discusses measuring absorber properties from the microscopic to the 
macroscopic.

• Chapter 5 discusses the application, design and theoretical modelling of porous 
absorbers.

• Chapter 6 discusses the application, design and theoretical modelling of resonant 
absorption, especially Helmholtz and membrane devices.

• Chapter 7 sets out some miscellaneous absorbers, which did not obviously fit into 
Chapters 5 and 6. Seating in auditoria, turning Schroeder diffusers into absorbers, 
sonic crystals, trees and vegetation are considered.

• Chapter 11 discusses hybrid diffusers, and as these cause absorption, they are also 
an interesting absorber technology.

• Chapter 12 discusses how to use predictions and laboratory measurements of 
single absorbent properties (mainly absorption coefficients), in room predictions, 
including the role of absorption coefficients in geometric room acoustic models.

• Chapter 13 rounds off the work on absorbers by looking at active impedance 
technologies.

The next chapter introduces diffusers.
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2 Applications and basic principles 
of diffusers

In this chapter the basic principles of diffusers will be developed. Following the same 
style of Chapter 1, the chapter will be driven by application. In many respects, the right 
and wrong places to use diffusers are still being worked out.1,2 There are locations, 
such as rear walls of large auditoria, where there is a general consensus that diffusers 
are a good treatment to prevent echoes and better than traditional absorbers. The case 
for using diffusers in some other places is less clear cut, and until further research is 
undertaken, some applications of diffusers are going to be based more on precedence 
and intuition, rather than scientific fact. Having said this, much has been learned in 
recent decades which can help to ensure that diffusers are used where they are needed.

This chapter will outline how diffusers can be applied and the effects their application 
will have on the physical acoustics and the listener response. It will also be used as an 
opportunity to introduce some basic physics, which will be needed to understand the 
more detailed chapters on diffuser prediction, design, measurement and characterization 
later in the book.

2.1 Echo control in auditoria

In Section 1.4 the problems of echoes and flutter echoes in rooms were discussed. To 
recap, echoes are caused by late arriving reflections with a level significantly above the 
general reverberance. For instance, they are often heard at the front of badly designed 
auditoria, with the echo being caused by a reflection from the rear wall. The echo might 
also come from a balcony front or many other multiple reflection paths. Flutter echoes 
are caused by repeated reflections from parallel walls and are often heard in lecture 
theatres, corridors and meeting rooms.

In Chapter 1, absorbers were suggested as a treatment for echoes, but diffusers 
should be used when sound energy needs to be conserved. This would be the case in a 
large auditorium with an orchestra, because every part of the sound energy generated 
by the musicians should be preserved and not lost by avoidable absorption. In other 
cases, the choice between diffusers and absorbers will rest on whether the energy 
lost to absorption will detract or improve other aspects of the acoustics, such as the 
reverberance, envelopment and intelligibility.

2.1.1 Example applications

There is a growing trend away from the traditional use of absorbers on the rear wall of 
auditoria towards the use of diffusers. Figure 2.1 shows Quadratic Residue Diffusers 
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(QRD®s) applied to the rear wall of Carnegie Hall in New York. QRDs are a type of 
Schroeder diffuser described in Chapter 9. This form of reflection phase grating was 
the starting catalyst for modern diffuser research about three decades ago. The diffusers 
were installed in Carnegie Hall because a long delayed reflection from the rear wall 
caused an echo to be heard on the stage, making it difficult for musicians to play in time 
with each other. Adding diffusers dispersed the reflection, reducing the reflection level 
arriving on the stage and consequently making the echo inaudible. The diffusers also 
improved spaciousness on the main floor by uniformly diffusing rear wall reflections 
and masking echoes from the boxes.3

Figure 2.2 shows the application of optimized curved diffusers to the side walls of 
the Hummingbird Centre in Toronto. A refurbishment of the hall was going to involve 
adding a reverberation enhancement system. This system added additional reflections 
from loudspeakers mounted in the side walls. Unfortunately, this was a shallow splay, 
fan shaped hall, and as is common with halls of this shape, if sources are on the side 
walls, echoes across the width of the audience area are heard. This was not a problem 
while the sound was being generated from the stage, but would have been a problem 
when the artificial reflections were generated from the side walls. It made no sense to 
treat the echoes with absorption, since this would just remove sound energy, which 
would rather defeat the point of having the artificial enhancement system installed 
in the first place. The solution was therefore to use diffusers, which break up lateral 
propagating reflections in the audience area.

The original concept was to use Schroeder diffusers, which were to be covered in 
cloth to hide their visual appearance. This is a common story in diffuser design. The 
acoustical treatment needs to complement the visual appearance of the room to be 
acceptable to architects. If the visual aesthetic is not agreeable, the treatment will 
have to be hidden behind fabric; but as discussed in Chapters 7 and 9, this would 
have turned the side wall diffusers into absorbers. (Another solution architects 
often apply to acoustical treatment that does not fit with the visual requirement of a 
space, is to remove the treatment completely. This not only solves the visual aesthetic 

Figure 2.1 Schroeder diffusers (QRD®s) applied to the rear wall of Carnegie Hall to 
prevent echoes (after D’Antonio and Cox2).
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problem, but it also saves money!). In the Hummingbird Centre, designers tried a new 
method for designing optimized curved surfaces, which is outlined in Chapter 10. The 
finished design then complemented the appearance of the space, and met the visual 
requirements of the architect. The concept was a basket weave that would thread in 
and out of the cherry wood side walls. O’Keefe comments:“The renovated room and, 
in particular, the enhancement system have been well received by the owners and their 
tenants, including the National Ballet and the Canadian Opera Company.”4

2.1.2 Aesthetics

For acoustics to be considered part of a project, it is important to be involved in the 
initial stages, so that appropriate budgets can be established. If acoustic treatments are 
introduced later in the process, the chances of them being included are greatly reduced. 
Therefore, acoustic consultants and treatment manufacturers must present the idea to 

Figure 2.2 Application of optimized curved diffusers (OptiCurve™) in the Hummingbird 
Centre, Toronto. (Consultant: John O’Keefe, Aercoustics Engineering Ltd.; after 
D’Antonio and Cox1.)
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the architect that including the proper acoustical design does not have to infringe on 
the intended aesthetic design. On many projects, architects prefer custom products, so 
that the design has their signature on it and not that of an acoustical manufacturer’s 
catalogue products. There are exceptions for functional projects, where absorbing 
ceiling tiles and fabric wrapped absorbers are chosen to reduce costs. How can acoustic 
treatments integrate with the architecture? This is very important, because every project 
has a function, in addition to its appearance, whether that is achieving intelligible 
speech or clear and enveloping music.

In classical architecture, scattering surfaces were an integral part of the form, with 
elements such as columns, relief ornamentation, statuary and coffered ceilings. These 
surfaces provided structural, aesthetic and acoustic functions. As architecture evolved 
into less ornate and simpler rectangular forms, very few of these architectural motifs 
were retained, which has altered the acoustic. Today, the architecture seems to be 
evolving into curvilinear lines and the challenge is to find options to complement 
contemporary architecture. One approach for designing diffusers is optimization – the 
results of which are shown in many figures in this chapter and the methodology of 
which is discussed in Chapter 10 – which offers the opportunity to collaborate with 
the architect in shaping treatment to satisfy acoustic and visual requirements. For these 
diffusing surfaces, any reflective material can be used. It is possible to shape concrete, 
wood, glass or other materials the architect has in mind. These custom designed 
materials then function in a similar way to the relief ornamentation, columns and 
statuary of classical architecture in that they complement the contemporary design. Of 
course, there remains the possibility to cover treatments with acoustically transparent 
fabrics and perforated metals, although this approach is falling out of favour.

2.1.3 Wavefronts and diffuse reflections

This section is an introduction to how diffusers disperse reflections. Figure 2.3 shows a 
cylindrical wave reflected from a planar hard surface, calculated using a finite difference 
time domain (FDTD) model. (The case shown is where the wavelength is much smaller 
than the surface width.) An impulse was generated, and so a single cylindrical wavefront 
is seen in frame 0, which is travelling from right to left towards the surface. The wave 
simply changes direction on reflection, travelling back in the specular reflection 
direction, where the angle of incidence equals the angle of reflection (in this special 
case back towards the source). The reflected wavefront is spatially unaltered from the 
incident sound. Consequently, the sound from the source reflects straight back, and is 
unchanged and not dispersed. This could lead to the reflection being perceived as an 
echo, especially if the source is a directional instrument, such as a trumpet. Therefore, 
the role of a diffuser is to break up or diffuse the reflection, so that the sound energy is 
dispersed, and sound from directional instruments does not remain in narrow beams.

Figure 2.4 shows the effect of changing a surface to help disperse reflections. In 
this case, part of an ellipse is used. It can be seen that the reflected wavefront is more 
bowed. The change is not great, because the curve of the ellipse was quite gentle; even 
so, in the far field the sound will be more spatially dispersed. The wavefront generated 
is still very ordered, however, so although single semicylinders or ellipses are good at 
spatial dispersion, they are not the best diffusers, because temporal dispersion is not 
achieved; this will be discussed further in Chapter 10.

Figure 2.5 shows the effect of using a Schroeder diffuser; the reflected wavefront is 
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much more complex than the previous examples. Inspection of the different frames 
shows why this complexity arises. Sound can be seen taking time to propagate in and 
out of the wells, causing parts of the reflected wavefronts to be delayed. The different 
depths of the wells cause different delay times, and the resulting interference between 
the reflected waves forms a complex pattern. Chapter 9 gives details of what depths 
are chosen to gain dispersion and why. An observer listening to the reflection from the 
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Figure 2.3 Cylindrical wave reflected from a flat surface calculated using an FDTD (Finite 
Difference Time Domain) model. The numbers indicate the frame order of the 
snapshots (FDTD courtesy of Brian Horner).
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Figure 2.4 Cylindrical wave reflected from a curved surface calculated using an FDTD 
model.



Figure 2.6 Measured spatial and temporal dispersion generated by a Schroeder diffuser.
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Figure 2.5 Cylindrical wave reflected from a Schroeder diffuser calculated using an FDTD 
model.



Applications and basic principles of diffusers 37

surface will receive sound arriving over an extended time as these different reflected 
waves move past. So as well as generating spatial dispersion, Schroeder diffusers also 
generate temporal dispersion. This can be seen in Figure 2.6 where the impulse response 
for a Schroeder diffuser is shown.

The consequences of temporal dispersion can be seen in the frequency domain. In 
Figure 2.7 the temporal and frequency response of a single specular reflection from 
a flat surface and a diffuse reflection from a diffuser are shown. In Figure 2.7a, the 
direct sound, a specular reflection and the room interference are shown. In Figure 2.7b, 
the frequency response of the specular reflection alone is given. (The time window 
is illustrated by the two vertical lines in Figure 2.7c.) The frequency response of the 
specular reflection is characterized by a high pass filter response, determined by the size 
and shape of the reflecting surface (see Chapter 10 for discussions of flat reflectors). In 
Figure 2.7c, where the reflection from a diffuser is given, the specular reflection is now 
temporally dispersed and shown as a diffuse reflection. The frequency response of the 
diffuse reflection in Figure 2.7d is characterized by a random distribution of irregularly 
spaced nulls and peaks. Many heuristic diffuser designs assume that any temporal 
distribution will provide a satisfactory frequency spectrum, when in fact coloration is 
often inadvertently introduced.

In Figure 2.8 the temporal and frequency responses of the total fields, consisting of 
the direct sound and the reflection(s), are shown. When the direct sound and a specular 
reflection combine, they form a comb filter. The time delay between the direct sound 
and the reflection determine the frequency spacing of the minima and maxima, and the 
relative amplitudes of the sound, the levels of the minima and maxima. Comb filtering 
is an effect that should be avoided in critical listening rooms and performance spaces. 
It can happen if large flat reflectors and nearby walls are not treated with absorbers or 
diffusers. When the direct sound combines with a diffuse reflection, the regularity of 
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Figure 2.7 Measured temporal and frequency responses for a flat surface (top) and a 
diffuser (bottom). The frequency responses are for the reflected sound only 
(after D’Antonio and Cox1).
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direct and reflected sound. The top case is for specular reflection, the bottom 
case is for diffuse reflection (after D’Antonio and Cox1).

Figure 2.9 Cylindrical wave reflected from a hybrid surface using an FDTD model; the 
shaded wells are filled with absorbent.
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the comb filtering is removed and the variation in levels reduced. The spectral content 
of the direct sound can be more fully perceived. In addition to providing uniform 
spatial dispersion, reducing comb filtering is a principal reason for using diffusers in 
many applications.

Another way of forming a diffuser is to combine reflection and absorption. By putting 
patches of absorbent on a wall, reflections from parts of the surface will be absent, and 
dispersion is generated. Figure 2.9 shows a FDTD prediction of this case; the absorbent 
is placed inside wells for convenience of prediction. The temporal dispersion is not as 
great as generated by Schroeder diffusers, however. To gain more dispersion, the surface 
can be curved or a ternary sequence used (see Chapter 11). Traditionally, acousticians 
have utilized patches of absorption on walls to obtain dispersion. But this only leads to 
modest dispersion below frequencies where the dimension of the patches is roughly half 
a wavelength. To obtain high frequency diffuse reflections, the dimension of the patches 
must be much smaller and the distribution of the patches is important. This approach 
forms a hybrid surface, which partially absorbs and diffuses reflected sound, i.e. 
providing diffsorption. This type of surface is discussed in more detail in Chapter 11. 
These types of hybrid surfaces cause partial absorption, therefore they need to be used 
where reverberation control and dispersion are simultaneously needed.

2.1.4 Coherence and terminology

Many might describe the reflection from a flat surface as being coherent, and the 
reflections from diffusers as being incoherent, however this is a misleading use of termi-
nology. From a purely physical standpoint, coherence occurs when there is a fixed, 
time invariant phase relationship between separate parts of a wavefront. For both flat 
surfaces and complex diffusers there is a fixed phase relationship. In this linear system, 
there is usually time variance. The wavefront from a diffuser is just complicated, not 
incoherent. To achieve physical incoherence, the surface would have to move or change 
shape over time.

Another terminology commonly used is to say the reflection is diffuse. There is no 
formal definition of this, but it refers to the case where the reflection is dispersed both 
spatially and temporally. The sound should be distributed more widely, and the impulse 
response at a receiver should have more reflections spread over a longer time. Many 
diffusers are designed by examining the spatial dispersion, and assuming that this 
will be accompanied by temporal dispersion. In addition, many diffusers are designed 
simply assuming that any temporal variation will produce uniform spatial dispersion 
and an acceptable frequency response, however this is not necessarily the case.

It is also important that surface diffusion and volume diffusion are not confused. 
For surfaces, the diffusion being discussed is that generated by surface reflections in 
terms of the spatial and temporal dispersion. Whether these diffuse reflections then 
contribute to make a sound field more diffuse, is not what is being referred to. Indeed, 
diffusers might be applied simply to treat first order reflection problems, such as echoes, 
and the effect these have on the reverberant sound field in the space might be of little 
concern. Both surface and volume diffusion refers to cases where the sound field, or 
surface reflections, become more complex. Section 2.10 further discusses some of the 
effects that diffusers have on the volume diffusion in the space.

The effect of surface roughness and impedance changes is to generate diffraction, i.e. 
the breaking up of sound wavefronts due to edges and other effects. Acousticians do not 
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seem to favour the term diffraction, however, but prefer diffusion, diffuse reflection or 
scattering. To complicate matters further, the use of these terms is inconsistent between 
different disciplines in acoustics. The only place where some clear differentiation has 
been set is with surface scattering and diffusion coefficients. A scattering coefficient 
refers to the ability of a surface to remove energy from the specular reflection direction; 
the diffusion coefficient is a measure of quality referring to the spatial uniformity of the 
reflections from a surface. Measuring and characterizing surface reflections is discussed 
in Chapter 4. This is also relevant to Chapter 12, where the application of scattering 
coefficients to geometric models is discussed.

Finally, it seems appropriate to discuss the spelling of diffusers. Schroeder and 
D’Antonio chose to use the spelling ‘diffusor’ to distinguish between acoustic and other 
diffusers, such as those used for lighting and air dispersion. However, common usage 
has drifted towards diffuser, and this will be employed throughout this book.

2.2 Reducing coloration in small sound reproduction rooms

Of interest in this section are small rooms where sound is being reproduced through 
a loudspeaker system; examples include recreational listening rooms, recording or 
broadcast critical listening control rooms, teleconferencing or distance learning rooms.

It is often useful to consider extreme boundary conditions when attempting to solve 
a room acoustic problem. In the case of a critical listening room, one extreme is an 
anechoic chamber, and the other a reverberation chamber. Anyone who has spent any 
time in these rooms realizes that neither is an exciting place for music listening. An 
ideal critical listening room will usually lie somewhere between the two extremes. It is 
also important to realize that since this is a sound reproduction room, the room can 
only corrupt what is being reproduced by the playback system. The unwanted artefacts 
added by the room are acoustic distortion.

In general, these rooms are not used for recreational listening, but rather as acoustical 
sonoscopes to accurately perceive spectral balance and spatial imaging. Modern 
diffuser design has played a significant role in developing these state-of-the-art sound 
reproduction facilities.

For late reflections, there has been general agreement in most designs, over many 
decades, that the decay time should be small, say with a reverberation time of about 
0.3–0.4s. But opinions about what should be done about the otherwise inevitable strong 
early reflections have varied over many decades. It is interesting to map out how opinions 
have evolved, from the early 2-channel designs to today’s multi-channel surround.

Early 2-channel designs of Tom Hidley emphasized early ceiling reflections, using a 
‘compression’ ceiling, and promoted a reflective front surrounding the monitors with 
the rear of the room being anechoic. The introduction of time delay spectrometry by 
Dick Heyser fostered an era that aimed at eliminating early frontal reflections, due to 
the measurable comb filtering that otherwise resulted. This led to the live end dead end 
(LEDE®)5 studio control room developed by Don and Carolyn Davis, suggesting the 
front of the room should be absorptive, or dead, and the rear live. Designers became 
aware of the research of Schroeder6 describing the importance of early lateral reflections 
in providing envelopment in concert halls. This led Peter D’Antonio7 to the use 
Schroeder diffusers on the rear wall of LEDE control rooms to provide passive surround 
sound; he also proposed broadband control of early frontal reflections, by creating a 
temporal and spatial reflection free zone (RFZ™)8 surrounding the mix position. Some 
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of the concepts have been adapted and adopted for listening room standards.9 Tom 
Hidley and Philip Newell promoted the idea of non-environment approaches, with 
significant broadband sound absorption, thus removing early reflections. D’Antonio, 
James Angus and George Massenburg then experimented with diffusing early frontal 
reflections, rather than absorbing them in control rooms, leading to reflection rich 
zones and significant diffusion – a control room with massive amounts of diffusion 
will be described later in Section 2.2.3.

As the industry moved from 2-channel to multi-channel, early reflections began to 
be viewed constructively, rather than being seen as destructive to the critical listening 
process. This concept was further promoted by a review of psychoacoustics research 
by Floyd Toole.10 There are still studio engineers and producers that prefer to control 
early reflections with absorption; an analogy to music performance may be informative. 
When a musician practices, she generally prefers a somewhat dead space, so that she 
can hear every nuance of her instrument. However, in performance she prefers a more 
reverberant space to support the instrument. These practice rooms may be analogously 
compared to critical listening rooms, where spatial and spectral nuances must be 
monitored and tailored. The performance space may be compared to a recreational 
listening room in which enveloping reflections enhance the listening experience.

2.2.1 Example: reflection free zone (RFZ)

The debate about the best small critical listening design continues, and probably will 
never be resolved because tastes change! However, for now, consider one of the most 
successful approaches, the RFZ. This design strives to minimize the influence of the 
room acoustic on the sound reproduced and so provide a neutral critical listening 
room. The design creates a spatial and temporal reflection free zone surrounding the 
primary mixing or listening position(s). The zone is spatial, because it only exists within 
a certain area in the room; and it is temporal, because the interfering reflections are 
only controlled over a certain time window, between the arrival of the direct sound, 
and prior to reflections arriving from the rest of the room.

It is well established that early reflections affect the perceived sound11,12 and acoustical 
treatment can be used to create a space in which spatial and spectral textures can be 
accurately perceived. Furthermore, the room aberrations can mask important artefacts 
on recordings. Even though the auditory system adapts rather well to interfering 
acoustic distortion, if undesirable artefacts are masked by room aberrations, they will 
not be perceived even after the listener has habituated to the room acoustic. Absorption 
can be used to control first order reflections between the source and the listener and so 
remove early arriving, strong reflections, which might produce coloration and image 
shift (image shift meaning that the sound source appears to be coming from the wrong 
place). Applying large numbers of absorbers leads to a dead room, and so diffusers are 
used to delay and temporally diffuse reflections while preserving sound energy. This is 
done to minimized distortion caused by interference with the direct sound. Diffusers 
on the rear wall essentially produce passive surround sound that provides ambience in 
the room and envelopment.

Figure 2.10 shows the energy time curves measured before and after treatment in a 
small critical listening room. At the top of the figure, the direct sound and interfering 
side wall, floor, ceiling and sparse reflections from the room are identified. Isolated and 
intense early specular reflections cause coloration, image shifting and broadening of 
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the image width and depth. The sparse specular reflections from the rear of the room 
also interfere with the direct sound, further colouring the reproduction. These problems 
can be addressed by controlling the competing early reflections from the walls, floor 
and ceiling by application of absorbers and diffusers. This creates an initial time delay 
gap before the reflections from the rear wall arrive, forming the reflection free zone 
described above; this extends to roughly 18 ms as shown in the lower graph in the 
figure. If absorption is used to remove early reflections, psychoacoustic experiments 
indicate that the sonic images in the soundstage will be extremely small, as if sound 
comes from a point in space. If diffusers are used, the sonic images take on greater size 
and appear more realistic. Following the application of diffusers on the rear wall, the 
effects of which are shown in the lower part of the figure, the sparse room reflections 
more resemble a reverberant field of a larger room, with increased spatial and temporal 
reflection density. Using this technique, it is possible to create a reverberant sound field 
with a linear slope within a small room.

D’Antonio et al.13 carried out a study on a recording control room; a drawing of 
the room can be seen in Figure 2.11. In this example, a reflection free zone is achieved 
by flush mounting the loudspeakers (L) with the woofers close to the front trihedral 
corners of the room. The massive front walls are splayed outward and treated with 
porous absorption to provide broadband control of first order reflections. The rear 
wall surfaces are treated with broadband diffusers (QRDs) to disperse first order rear 
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wall reflections away from the listeners, while providing ambience and envelopment. 
The shaded area represents the spatial reflection free zone, 24 dB below the direct 
sound, with an initial time delay gap of approximately 17 ms, where the predominant 
energy is from the monitor loudspeakers. Two types of reflections are indicated in 
Figure 2.11; an undesirable specular reflection from the glass doors forming the 
machine room (S) and diffuse reflections which arise from 7 m2 of diffusers located on 
the rear wall (D).

The rear wall diffusers reduce the level of the reflections reaching the listener 
early and so coloration effects are reduced. Figure 2.8 (top row) shows the time and 
frequency response for a listener close to a large plane surface with no other surfaces 
present. The similarity between the incident and reflected time responses can be seen. 
(Some minor differences are seen, because the measured surface was finite in extent.) 
The incident and reflected sounds interfere to cause a comb filter response, shown to 
the right. This gives emphasis to some frequency components, while others are absent. 
This will change the relative magnitude of the harmonics in music and so lead to a 
coloured sound where the timbre is not true. Figure 2.8 (bottom row) shows the case for 
a listener close to a diffuser. The diffuser introduces temporal dispersion of the reflected 
sound, which leads to a more complicated frequency response. The regularity of the 
comb filtering is minimized, and consequently its audibility is diminished.

Unfortunately, although the coloration can be measured, there is no formal method 
for evaluating the audibility of comb filtering. Chapter 4 discusses some possible 
approaches but cannot draw any definite conclusions about a suitable method. Further-
more, a more complete model is required which allows for the masking effects which 
occur due to other room reflections. Comb filtering becomes less of a problem when 
there are either many additional reflections to mask it, or when you have multi-channel 
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Figure 2.11 A sound reproduction room, with a designed reflection free zone (RFZ) shown 
shaded (after D’Antonio and Cox1).
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loudspeakers which dominate the natural acoustics of the listening room.
The most efficient placement for a diffuser (or an absorber for that matter), is at the 

points where the first order specular reflections are produced – the geometric reflection 
points. Consider a room in which all of the surfaces are mirrors. The geometric reflec tion 
points are the locations on the boundary surfaces at which a listener can see the sources.

The number of diffusers that should be used depends on personal preference. If 
interfering reflections are absorbed, then one experiences the highest resolution sonic 
images, which are essentially points in space. If diffusers are used to control these 
reflections, the apparent size of the image is broadened. If done properly, some have 
described this as a more natural size image, similar to what might be experienced in 
the presence of an actual sound source. So a balance has to be reached in which the 
desired apparent source width and depth is achieved, while creating an appropriate 
ambiance. While some people favour very dead spaces for mixing audio, others do not. 
Some studio designers like to create a non-environment where only the direct sound is 
received by the sound engineer. Whether this is a desirable acoustic or not seems to be 
a matter of personal preference. High levels of absorption remove most of the room 
effects such as coloration, but lead to a very dead room that some find oppressive. It 
leaves the sound engineer the tricky job of interpolating between the dead mixing room 
and more-normal listening environments such as living rooms, but does ensure that the 
engineer receives a very pure sound where details can be easily detected.

If some liveliness is to be left in the room, a combination of absorbers and diffusers is 
better than absorption and flat walls, which generate specular reflections. Consequently, 
many of the industry’s leading mastering facilities use this combination of treatments. 
To take a few examples, one of the industry’s most successful mastering rooms is 
Gateway Mastering + DVD, Portland, ME, shown in Figure 2.12 and one of the most 
successful recording studios is the Hit Factory, New York, shown in Figure 2.13. Live 
performance studios also usually employ a mixture of absorbers and diffusers. Figure 2.14 
shows the live performance studio at XM Satellite Radio. The glass wall is a Schroeder 

Figure 2.12 Gateway Mastering, Portland, ME, showing a fractal diffusing rear wall 
(Diffractal®). (Photo courtesy of Gateway Mastering + DVD.)
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diffuser and on the opposite wall there are optimized curved diffusers. Both are used 
to diffuse sound in the performance space – Chapters 9 and 10 discuss these designs. 
Other treatments not visible in the photo include hybrid absorber-diffusers, which are 
discussed in Chapter 11.

In a small critical listening room, the walls, floor and ceiling are usually rather close 

Figure 2.13 The Hit Factory, New York. (Photo courtesy of The Hit Factory, New York 
and Harris, Grant Associates.)

Figure 2.14 A live performance studio seen through a glass Schroeder diffuser. The op-
posite wall features Waveform® Spline, an optimized curved diffuser. XM 
Satellite Radio, Washington, DC. (Acoustician: Francis Daniel Consulting 
Alliance. Photo courtesy of Michael Moran Photography.)
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to the listener. How far away should a listener be from the diffusers? The distance 
between listener and diffusers can be determined by considering the scattered and 
total field. First consider the scattered field, in other words just the reflections from the 
diffuser. A diffuser requires a certain time or distance to form a wavefront. There is an 
analogy to loudspeakers that can be made here. A listener would not consider sitting 
30 cm from a multi-way loudspeaker, because the listener would be in the near field of 
the device. At some distance from the loudspeaker, all individual high-, mid- and low 
frequency waves from the individual drivers will combine to form a coherent wavefront. 
The same holds true for scattering surfaces. They also can be thought of in terms of 
near and far field, although the situation is a bit more complex than for loudspeakers.

It is common to describe the scattered field by its spatial response. This is similar to 
the far field polar response of a loudspeaker, however the polar response of a diffuser 
is much more difficult to measure and this has been the subject of extensive research 
as reported in Chapter 4. In the far field, the polar response of an ideal diffuser is 
invariant to the angle of incidence, the angle of observation and the frequency, within 
its operational bandwidth. Unfortunately, in most critical listening rooms, it is usual 
for sources and receivers to be in the near rather than the far field. Consequently, 
listeners should be positioned as far from scattering surfaces as possible. Precedence 
has shown that it is best if the listener is at least three wavelengths away from diffusers. 
Since diffusers used in listening room applications have a lower frequency limit of 
roughly 300–500 Hz, this means a minimum distance of 3 m is recommended. In some 
situations this distance may have to be compromised.

A listener positioned near a multi-way loudspeaker with their ear close to the mid-
range driver hears sonic anomalies, and the same is true when the listener gets too 
close to a diffuser. Many of the phasing anomalies reported by room designers are due 
to the fact that they are listening too close to the diffuser and they are hearing near 
field comb filtering effects. Some listeners have even put their heads in the wells of 
large low frequency diffusers, and then claim something is wrong, because it sounds 
odd! Furthermore, getting too close to a diffuser means that the temporal response is 
overly dominated by the surface close to the ear, which means the temporal and spatial 
dispersion generated by the diffuser is not heard. The direct and reflected sounds are 
then rather similar and comb filtering gets worse. This naturally leads to a consideration 
of the total field.

When listening to music in a room, the total field is heard, which is a combination 
of the direct sound and reflections. If the scattered sound predominates, aberrations 
are heard. Just as room reflections affect the size and directionality of sonic images, 
they also can introduce coloration by changing the frequency response, distorting the 
spectral content or timbre of the direct sound. Studying the total field offers some 
insight into why scattering surfaces may introduce coloration.

Consider a listener approximately 1 m from a scattering surface. If the reflection 
comes from a flat surface, the reflected and direct sound are comparable in level and 
the result is a comb filter (Figure 2.8, top). This is not very representative of the content 
of the direct sound. While this looks rather bad, the comb filtering may or may not 
be perceived depending on the relationship between the frequency of the nulls/peaks 
and auditory critical bands. In addition, masking by other reflections may reduce 
audibility of the coloration. If the reflection comes from a diffuser, the scattered energy 
is dispersed in time, and the frequency response consists of an irregular spacing of 
nulls and peaks (Figure 2.8, bottom). The frequency response of the total field more 



Applications and basic principles of diffusers 47

closely resembles the direct sound, since the diffuse reflections have minimized the 
interference. Importantly, the listener no longer picks up the regularity of the peaks 
and troughs that occur for a flat surface, and so the spectral changes introduced may 
be less noticeable. Figure 2.8 shows the case for a diffuser which scatters in one plane. 
Diffusers which scatter hemispherically will direct more energy away from the listener 
and so will further reduce the comb filtering.

More recent research has led to hybrid surfaces, which consist of reflective and ab-
sorptive areas. These surfaces provide absorption at low to mid-frequencies and diffuse 
reflection at mid- to high frequencies; these may allow the listener to get even closer to 
the scattering surface. The design of hybrid surfaces is described in detail in Chapter 11.

The level of the scattered sound and the resulting interference in the total field 
decreases in the following order: flat surface, curved surface, 1D phase grating, 2D 
phase grating, 1D amplitude grating, 2D amplitude grating and absorber. In light of 
these remarks, it is important to consider the temporal, spatial and spectral response of a 
sound diffusing surface. Casual or arbitrary shaping of surfaces is unwise and designers 
should solicit theoretical or experimental proof of the performance characteristics for 
diffusers. Chapter 4 discusses how this might be done.

2.2.2 Surround sound

How should listening spaces be adapted for surround sound? The design of these spaces 
is heavily dependent on how one controls reflections from the front and surround 
loudspeakers, as well as how the subwoofers couple with the room. The goal is to have 
the room complement the additional speakers. Today, with surround sound repro-
duction formats becoming increasing popular, the 2-channel concepts given above are 
still valid but need to be employed differently. The rooms are not polarized between 
live and dead zones, and tend to be more uniform, with diffusers being used to enhance 
the envelopment and immersion provided by the surround speakers and to provide 
the desired degree of ambience. One approach to designing a surround listening room 
suggested by D’Antonio utilizes broadband absorption down to the modal frequencies 
in all the corners of the room and across the front wall behind the left, centre and 
right loudspeakers (see Chapter 6 for possible designs). The side wall space between 
the front loudspeakers and the listeners can be controlled with broadband absorbers 
or 1D diffusers. Broadband, 1D modulated, optimized diffusers are used on the side 
and rear walls to disperse sound from the surround loudspeakers, which are preferably 
wall mounted or free standing (it is important to keep in mind that loudspeakers have 
better performance when they are surface mounted or far from boundary surfaces). 
These wall mounted diffusers work in conjunction with the surround loudspeakers and 
enhance envelopment. Diffusing clouds – with or without broadband absorption down 
to the modal frequencies – are placed above the listeners. These ceiling diffusers provide 
enveloping lateral reflections, additional modal control and a convenient surface for 
lighting and HVAC.

The room height can be divided roughly into thirds with diffusers in the central 
section, to the extent that the ear is covered in both seated and standing positions. 
The lower and upper areas can remain untreated. There is the possibility of using 
distributed absorbers or diffusers on the upper third to control flutter echoes, if 
it is a problem. Wall-ceiling soffits and wall-wall intersections should be used to 
provide low frequency absorption. Many dedicated listening rooms utilize massive 
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construction for sound isolation, thus low frequency control is required. The use of 
optimal dimensional ratios and multiple in-phase subwoofers properly placed can 
offer significant advantages.14

2.2.3 Ambechoic

A final extreme example of a critical listening environment is the so-called ambechoic 
space, a concept devised by George Massenburg. Figure 2.15 shows a picture of 
the front of the room. The room uses very large amounts of very deep and complex 
diffusers to alter the sound field within the space. Figure 2.16 shows the impulse 
response measured, showing many interesting features, including the extremely high 
reflection density at very early times for a small room. There is no time delay before the 
reverberance begins. This space can be described as an ambient anechoic or ambechoic 
space, because although the reverberant level is low and somewhat similar to an 
anechoic chamber, the decay time is about 0.3 s and there is nonetheless a definite sense 
of reverberance. One can comfortably hold a conversation while listening to music in 
the room – the room is not like an anechoic chamber. However, the low level of the 
reverberance means that acoustic images are very precise.

Unusually, the diffusers operate down to 50–100 Hz, and so are important in con-
trolling the low frequency modal response of the room as well. (Additional resonant 
absorbers are also used as seen in the corners of the photo.) Forming rooms from very 
much more complex shapes by, for example, covering them in very deep diffusers, can 
increase the number of standing wave modes at low frequencies.15–18 This can reduce 
the unevenness of the frequency response somewhat. However, it is unusual for this 

Figure 2.15 Blackbird Studios, www.blackbirdstudio.com. (Photo courtesy of George 
Massenburg and Blackbird Studios.)
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to be done in a room, because of the space required and normally resonant absorbers 
would be used on their own to treat low frequencies. Another solution might be to use 
active diffusers, as discussed in Chapter 13.

2.3 Music practice rooms

Individual practice rooms play an essential role in music education. For all the extensive 
hours students spend in them, they are usually very uninviting and uninspiring cubicles. 
They usually are small rectangular rooms, 8–25 m3, fabricated from concrete block, 
with traditional compressed acoustic ceiling tiles, some curtains to allow the acoustics 
to be varied, a concrete floor and a full length mirror, which students use to monitor 
their posture and fingering. In other words, a low cost, functional and student proof 
space. Since the surfaces are usually concrete and the volume is small, the rooms 
typically have audible distortions caused by modes. Some designs feature non-parallel 
walls to minimize flutter echoes. In addition to awareness of the unwanted buzzes and 
squeaks, students studying articulation, tone production and intonation are hampered 
by poor room acoustics. Another approach to making a music practice room is to use 
a prefabricated isolation cubicle. These rooms are typically small with absorbent on 
the room surfaces making the space relatively dead. As with other small rooms, these 
spaces can benefit from diffusers to give the musician some reverberance while mini-
mizing coloration.

Consider a candidate room, which was 4.5 m long, 2.1 m wide on one end, 2.4 m 
wide on the other and 2.7 m high. The room had a conventional compressed acoustical 
ceiling glued to dry-wall, concrete floor, cinder block walls and a thin curtain to allow 
the acoustics to be varied somewhat. Before and after acoustical changes were carried 
out, objective measurements and subjective musician impressions were evaluated. The 
study introduced three acoustical elements: (i) an acoustical concrete masonry block; (ii) 
a hemispherically scattering ceiling diffuser; and, (iii) a wall mounted hemispherically 
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Figure 2.16 The impulse response in an ambechoic listening room.
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scattering hybrid diffuser-absorber. The first two of these elements are shown in Figure 
2.17. The acoustical concrete masonry block19 provided low frequency modal control 
via resonant absorption, structural walls and diffuse reflections in a single plane to 
promote ambience, intonation, tone production and support. In this connection the 

Figure 2.17 A music practice room treated with diffusers (Skyline® on the ceiling20 and 
DiffusorBlox® on rear wall19) and absorbers (after D’Antonio and Cox1).
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Figure 2.18 Impulse response and decay curve of music practice room shown in Figure 
2.17 at early stages of treatment (after D’Antonio and Cox1).
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word ambience is used to denote a high spatial impression and envelopment. The 
hemispherically scattering ceiling diffuser20 provided ambience, enhanced ability to 
hear intonation issues and a more diffuse sound field. The hemispherically scattering 
hybrid absorber-diffuser provided partial absorption, with any reflected energy being 
diffused. This provided the desired amount of articulation control for critical listening. 
Thus, the practice room provided detailed resolution, space or ambience, improved 
feedback for intonation and tone production, support, reduced modal coloration and 
lessened playing fatigue.

The impulse response of the room was measured during various stages of treatment 
as shown in Figures 2.18 and 2.19. The time response shows the sound decay becoming 
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Figure 2.19 Impulse response of music practice room shown in Figure 2.17 at end of 
treatment (after D’Antonio and Cox 1).
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more even after treatment is added. Low frequency modal measurements were made 
before and after the addition of acoustical masonry units. The masonry units made 
a significant improvement in reducing the unevenness in the frequency response 
produced by the modes as seen in Figure 2.20. Figure 2.21 shows the decrease in 
the reverberation time in the frequency range where the masonry units are tuned for 
maximum absorption. The experiments verified that with treatment, a very functional 
and enjoyable practice room could be attained.

2.4 Promoting diffuse fields in reverberation chambers

Reverberation chambers are designed to produce a diffuse sound field, one where the 
reflected energy density is the same throughout the room and all directions of propa-
gation are equally probable. Reverberation chambers need to achieve this condition 
because they are a reference test environment providing repeatable results, which can be 
interpreted and matched by other laboratories. Unfortunately, a completely dif fuse field 
is not achievable, and this is one of the reasons that round robin tests on reverberation 
chamber methods usually show significant anomalies (see Chapter 3) and why the ab-
sorption coefficients measured in reverberation chambers need to be used with care in 
prediction models (see Chapter 12).

One of the methods used to achieve a more diffuse field is applying surface or 
volume diffusers. Standing wave modes in the reverberation chamber cause the energy 
density to be uneven. Placing diffusers in the paths of modal propagation creates 
additional modes, which make the sound field more uniform spatially and with respect 
to frequency. Surface diffusers need to be of the order of half a wavelength or deeper 
to have a significant effect on the sound field. The diffusers must also be applied to at 
least three of the boundaries, so that opposite surface pairs have at least one surface 
treated (e.g. treat the floor or ceiling). Consequently, surface diffusers need to be large 
and can be prohibitively expensive. A more economic solution is to hang diffusers in the 

Figure 2.21 Change in reverberation time caused by adding absorbing/diffusing masonry 
units in the music practice room:

  without; and
  with masonry units (after D’Antonio and Cox1).
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volume of the room. Surface diffusers can only influence sound over a hemisphere, 
as they only receive waves from 2π space. Volume diffusers, on the other hand, can 
influence a full sphere, and so it is possible to get greater diffusion from this type. Figure 
2.22 shows a typical application in a reverberation chamber. A final option is to use 
rotating elements, but these will presumably become less common as test signals which 
require time invariance, such as maximum length sequences and swept sine waves, 
become more popular.

It may be that using volumetric diffusers away from wall surfaces might offer a useful 
acoustic treatment in other rooms. Absorbers hung in the volume of large performance 
spaces are used to control reverberation, so there are places in some rooms which volu-
metric diffusers could be placed without interfering with sight lines. Diffusers could 
be hung in the propagation path of echoes. They could also influence the reverberance 
and distribution of sound in the room. Sonic crystals are examples of such devices – 
Chapter 7 discusses their use for absorbing sound – where periodic arrangements of 
spheres and cylinders are used. However, to achieve good scattering and broadband 
performance, periodicity must be avoided. A fractal would be a good choice, because 
it has objects on various length scales to scatter sound of different wavelength and so 
can cover a useful bandwidth.

2.5 Improving speech intelligibility in underground or subway 
stations

Many underground (subway) stations are non-diffuse spaces. The long and narrow 
shape results in the mean free paths along the length of the station being much longer 
than those for transverse propagation (where the mean free path is the average time 
between reflections). Consequently, the sound decays much faster for transverse 
propagating sound than for sound travelling up and down the length of the station. 
This results in a double decay and two reverberation times in the space. The long re-
verberation time causes problems with speech intelligibility, as the reverberance causes 

Figure 2.22 The small reverberation chamber at RPG Diffusor Systems, Inc. (Photo 
courtesy of RPG Diffusor Systems Inc.)
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words to run into each other and become difficult to distinguish. Kang21 showed that 
by applying diffusers to the side walls of the station, more transverse propagation 
can be promoted to decrease the reverberance of the space and improve speech 
intelligibility.

2.6 Promoting spaciousness in auditoria

One of the pioneering applications of Schroeder diffusers was by Marshall and Hyde 
in the Michael Fowler Centre, New Zealand.22,23 Figure 2.23 illustrates the application. 
Marshall and Hyde used large overhead reflectors to provide early reflections to the 
audience in the balconies. This was a method whereby a hall could have good clarity, 
and yet maintain a large volume for reverberance. The large volume partly comes from 
the space behind the diffusers.

Not many years before the design of the hall, it was established that lateral reflections 
were important in concert halls as these promote a sense of envelopment or spatial 
impression in rooms.24 Music outdoors may be popular when accompanied with 
fireworks, but the quality of the sound is usually poor. Move indoors and the sound 

Figure 2.23 Schroeder diffusers in the Michael Fowler Centre, New Zealand. (Photos 
courtesy of Dr Harold Marshall of Marshall Day Acoustics.)
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comes alive, enveloping and involving the listener in the music making process. 
Outdoors, listeners receive sound straight from the orchestra, there are no reflections 
from walls, and the sound appears distant. When music is played in a room, reflections 
from the walls, ceiling and floor embellish the sound, especially if there are plenty of 
reflections arriving from the side. When sound reaches the listener straight from the 
stage, the same signal is received at both ears, because the head is symmetrical and 
the sound to both ears travels an identical path. When reflections come from the side, 
the signal at each ear is different, as sound to the furthest ear has to bend around the 
head. This means the sound arrives later and is significantly altered. The brain senses it 
is in a room, because of the differences between the ear signals, and a feeling of being 
enveloped by the music occurs.

This need for lateral reflections influenced Marshall and Hyde to apply diffusers to 
the large overhead surfaces shown in the figure. The diffusers promote early arriving 
lateral reflections for spatial impression and clarity.

2.7 Reducing effects of early arriving reflections in large spaces

In Section 2.2 it was discussed how early arriving reflections can cause problems in 
small spaces due to coloration. Problems also arise in large rooms, for example in 
rooms with low ceilings. The ceiling reflection can arrive soon after the direct sound 
for audience members at the rear of the room, and this can lead to coloration, as comb 
filtering may result. Figure 2.24 shows an application of diffusers in the Cinerama 
Theatre, Seattle, WA. Mainstream cinemas tend to be very dead spaces with the room 
effects added artificially through the surround sound reproduction system. The design 
brief for Cinerama, by Grant of Harris–Grant Associates, was to generate an acoustic 
with high envelopment and some reverberance, a first in modern commercial cinema 
design, by using diffusers on the ceiling and walls. While there is an extensive use 
of surface diffusion, experimental measurements showed that the cinema satisfied 
THX design criteria. The curved diffusers were used to disperse reflections from the 
relatively low ceiling to minimize comb filtering. The diffuser used on the ceiling is 

Figure 2.24 Cinerama Theatre, Seattle, WA, with a diffusing ceiling (OptiCurve™). (Photo 
courtesy of University of Salford.)
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an optimized curved diffuser – the design process for this surface is discussed in more 
detail in Chapter 10.

A secondary effect of using ceiling diffusers can be to reduce the level of early arriving 
non-lateral reflections from the ceiling. This can increase the spatial impression, but 
whether this happens depends on the geometry of the room and the diffusers used.

2.8 Stage enclosures

During musical performances there is a need for surfaces or enclosures, conventionally 
called acoustical shells, that surround the musicians. These shells reinforce and blend 
the sound that is projected toward the audience. It also heightens the ability of the 
musicians to hear themselves and others. Acoustical shells typically incorporate a rear 
wall, flared side walls and an overhead canopy.

2.8.1 Overhead canopies

Overhead reflections from stage canopies can cause coloration if the canopy effectively 
covers the whole stage area. Overhead canopies might be used to hide the presence of a 
fly tower, or may simply be an integral part of the stage canopy design. Figure 2.25 shows 
a typical case at Kresge Auditorium, Boston, MA (Acoustician: Rein Pirn, Acentech, 
Boston) and Figure 2.26 another at First Baptist Church, Eugene, OR (designed by 
Steve Diamond, AGI, Inc.). The canopy provides reflections back to the stage, which 
are necessary for the musicians to hear themselves and others. Without early reflections 
from the stage shell, musicians will find it difficult to create a good balance among 
themselves and keep in time. Canopies with little open area provide plenty of overhead 
reflections back to the musicians, but if the canopy elements are flat, there is a risk that 
the overhead reflections will be too strong and so cause coloration. The solution to this 
is to shape the canopy, so that some breaking up of the reflected wavefronts occurs. 
The diffusers spatially and temporally disperse the reflections, and so reduce coloration. 
The design of overhead stage canopies is discussed in more detail in Chapter 10.

Figure 2.25 Overhead stage canopy (Waveform™) at Kresge Auditorium, Boston, MA. 
(Photo courtesy of RPG Diffusor Systems Inc.)
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Overhead stage canopies can have a much greater open area than that discussed 
above. Figure 2.27 shows an example, where the canopy serves both the performers 
and the audience at Rivercenter for the Performing Arts, Columbus, GA (Acoustician: 
JaffeHolden Acoustics). Again the canopy is designed to promote better communication 
between musicians across the orchestral stage, leading to better ensemble among 
musicians and consequently better quality concerts. This is achieved by ensuring an 

Figure 2.26 Rear towers and overhead stage canopy (Overture®) at First Baptist Church, 
Eugene, OR. (Photo courtesy of Steve Diamond, AGI, Inc.)

Figure 2.27 Rivercenter for the Performing Arts, Columbus, GA. (Photo courtesy of Jaffe-
Holden Acoustics.)
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even distribution of reflected energy from each of the instruments on the stage to all 
musicians, with the reflected energy being delayed by about 20–30 ms.25 A canopy may 
also be used to reflect sound towards audience areas lacking sound energy. There is risk, 
however, that providing extra overhead reflections from the stage canopy could lead to 
coloration. Canopies with large open areas are usually designed so much of the sound 
will go through the stage canopy to the void above, to be returned to the audience or 
stage from the true ceiling of the auditorium, and so provide additional reverberance.

If the canopy elements are sparse and flat, then the pressure distribution will be uneven. 
For some receiver positions there will be specular reflections from a canopy element, and 
so at mid-high frequency a strong reflection level results. For other receiver positions, the 
geometric reflection point misses the canopy elements, and a low reflection level results. 
Figure 2.28 shows a comparative sound pressure level distribution from a canopy with 
open areas and plane surfaces, and a canopy with open areas and diffusing surfaces after 
Dalenbäck et al.26 Consequently, canopies with spaces between the reflectors benefit 
from using diffusing elements, as they enable a more uniform coverage over the stage 
area by scattering sound to receivers, which would otherwise lack reflections due to 
the gaps between the canopy. Chapter 10 discusses stage canopy design in more detail.

2.8.2 Rear and side of stage enclosures

In addition to the orientation of the shell surfaces with respect to the performers, the 
nature of the surfaces is critical to good performance. A shell can contain reflecting 
and diffusing surfaces27 and less often absorption.

Marshall et al.28 suggested that early reflections among musicians greatly improve 
their sensation of playing as a group if the reflections:

 (a) occur within a temporal window that is dependent on the nature of the musical 
programme material, typically between 17 and 35 ms after the direct sound;
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Figure 2.28 Schematic of pressure distribution from fairly open canopies with different 
surface treatments (adapted from Dälenback et al.26).



Applications and basic principles of diffusers 59

 (b) include high frequency content roughly between 500 Hz and 2,000 Hz, containing 
the attack transients that are cues for rhythm and expression;

 (c) contain a balance of all the parts in the ensemble at all performance positions.

Condition (a) is easily met by spacing the shell an appropriate distance from the per-
formers, while (b) and (c) depend more on the surface topology. Acoustical shells have 
used a wide variety of surfaces ranging from flat reflecting panels to various forms 
of surface irregularity, such as curved surfaces, poly-cylinders, fluted columns, and 
reflection phase gratings. The current state-of-the-art is to utilize multi-dimensional 
optimization to obtain the optimal shape and orientation; a technique discussed in 
Chapter 10. In Figure 2.29, the reflections from a flat and diffuse shell are compared. 
The diffuse reflections are spread over time and are of reduced level, lowering the 
chances of coloration and harshness due to comb filtering. The diffusion also satisfied 
the requirements (b) and (c).

D’Antonio29 carried out a series of experiments using objective measures as well as 
musician’s perceptual evaluations, to determine the appropriate combination and ori-
entation of reflecting, diffusing and absorbing surfaces to optimize performance. The 
study began by looking at small chamber groups. An example of the test arrangement 
with a string ensemble is shown in Figure 2.30. Five different microphone systems were 
used for each playing environment to obtain five simultaneously recorded signals:

1.  A mannequin, with microphones at the entrance to the ear canal, was placed within 
the group to determine ensemble blend without self-masking.

2.  Probe microphones, Figure 2.31, were inserted into the ear canal to determine 
ensemble blend with self-masking of the musician’s instrument.

Figure 2.29 The reflections from a flat and diffusely reflecting shell.
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 3. Headband microphones, located at the entrance to the ear canal, were also used 
to monitor ensemble blend with self-masking.

 4. An omnidirectional microphone was placed within the group as a monophonic 
control.

 5. Spaced omnidirectional microphones were placed at the front of the house.

The string ensemble preferred a mixed orientation shell with lower vertical wells and 
upper horizontal wells, producing lateral and vertical diffusion respectively. Some 

Figure 2.30 Cavani string quartet performing in front of VAMPS® shell23 at the Cleveland 
Institute of Music (after D’Antonio and Cox2).

Figure 2.31 Probe microphone inserted into the ear canal of the first violinist. Microphone 
is inserted to a point just in front of the ear drum (after D’Antonio29).
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musicians preferred flat surfaces on the lower surfaces for better bass coupling. Mutual 
and self-hearing were unanimously improved. The general reaction was that the 
diffusive shell provides warmth and intimacy and minimizes harshness. The preferred 
shell distance for warmth and intimacy was approximately 0.9–1.8 m. The preferred 
shell distance for projected sound quality was 2.7–3.7 m. There was unanimous 
agreement that a height of 4.9 m was better than 2.4 m.

A brass quintet experienced harshness from a completely reflective shell and pre ferred 
lower diffusers with vertical wells and upper diffusers with horizontal wells. The preferred 
distance for mutual and self-hearing as well as projected sound quality was 2.7 m. A 
horn duo preferred a mixture of flat surfaces and diffusers at approximately 1.8 m.

Following the chamber group research, the requirements of a symphony orchestra 
were investigated. There is an inherent imbalance in an orchestra, because the percussion 
and brass are naturally louder than the strings and woodwinds. Many traditional shells 
employ an average acoustic solution to satisfy a majority of the players, using fixed 
acoustical elements designed for existing musical formats and orchestral arrangements. 
Since each musician and musical section has a different preference for its own local 
acoustical environment, and since musical format, orchestral arrangements, and 
conductor’s preferences change, the benefit of a variable acoustical design was explored. 
The result was an open architecture modular framework, which would allow local 
acoustical environments in the rear of the orchestra, where the loudest and most 
problematic instruments are located. A study was done with the Baltimore Symphony 
Orchestra at the Meyerhoff Symphony Hall, Baltimore, MD, using questionnaires and 
experimental measurements.

The various sections of the orchestra were asked to mark the quality of the acoustic 
on a 4 point scale before and after treatment. For instance, the oboe section was 
asked how the addition of the diffusive shell affected synchronicity, intonation, tone 
production, distant hearing, mutual hearing and self hearing, compared to the flat 
existing enclosure. All aspects were improved, with the average score increasing from 
1.5 to 3.5. Over the whole orchestra, the average score increased from 1.9 to 3.3.

Figure 2.32 Diffusers around the stage of the Corning Glass Center, NY. (Photo © Paul 
Warchol Photography, www.warcholphotography.com)
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The shell was placed around the entire perimeter of the stage, similar to the shell 
shown in Figure 2.32. There was no change to the overhead circular disc canopy. 
The shell consisted of a lower open support that allowed sound to reflect from the 
hard existing wall behind the shell. The next 0.6 m high tier consisted of horizontally 
diffusing single plane Schroeder diffusers with the centre of this level at seated ear 
height. The next 0.6 m in height contained all vertical diffusion, resulting from the 
wells being oriented horizontally. A 0.6 m cantilever canopy was oriented on top of the 
vertically diffusing diffusers, at an angle of 45° with respect to the face of the diffusers. 
The purpose of the experiment was to blend the outer strings into the woodwinds, 
decrease the harshness of the brass, intensify the fullness and warmth of the strings 
and control strong specular reflections to enhance the sense of ensemble and rhythmic 
performance of the musicians. Musicians reported improved ensemble playing through 
the questionnaires.

2.8.3 Orchestra pits

Semi-enclosed stages are often an acoustically challenged space for music performance. 
The ceiling is typically low as is the volume. Sound levels can become excessive and 

Figure 2.33 Two views of the pit at Nicholas Music Center, Rutgers University. (Architects: 
Bhavnani & King Architects, NY; photos courtesy of RPG Diffusor Systems Inc.)
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ensemble hearing is often lacking. The situation is even worse within an orchestral 
pit in an opera or ballet house. These situations can be improved with the use of ab-
sorption and diffusion with low-mid frequency absorption to control sound levels and 
diffusion to improve ensemble. Figure 2.33 (bottom) shows the ceiling and walls of an 
orchestra pit treated with hemispherically scattering diffusers and single plane diffusers, 
respectively. The pit rail, shown on the left in the top of the figure, is also an important 
surface for communication between the stage and orchestra on the left. It is shown 
with upper diffusers having horizontal dividers to scatter sound in a vertical hemi-disc 
and lower diffusers to provide horizontal scattering for the benefit of the conductor 
and orchestra. Diffusive concrete masonry units, such as those shown in Figure 6.10, 
are also becoming popu lar for use in orchestra pits.

2.9 Blurring the focussing from concave surfaces

Concave surfaces can cause focussing in a similar manner to concave mirrors. This can 
lead to uneven sound levels around a room, which is usually undesirable. Furthermore, 
as the concave surface concentrates energy in particular locations, there is a risk that 
this reflection will be significantly above the general reverberation of the space and so 
cause echo problems or coloration. A famous example of this is the Royal Albert Hall, 
where the large dome caused problems with long delayed and focussed reflections. The 
solution was to place volume scatterers, the ‘mushrooms’, to disperse sound and also 
to provide earlier reflections to the audience. Assuming the concave surface cannot be 
removed, the only treatments available are absorbers or diffusers. Both treatments will 
work; the choice depends on other acoustic considerations, such as reverberance.

Figure 2.34 shows the polar response near a concave wall, which was to be part of a 
music rehearsal room at the Edwina Palmer Hall, Hitchin, England. The concentration 
of sound at the focus is clear. To overcome this problem, a diffuser was specified 
by Raf Orlowski of Arup Acoustics, UK. An optimized diffuser was developed and 
applied as shown in Figure 2.35, and Figure 2.34 shows that the dispersion of the 
focused energy is quite dramatic. It would have been possible to remove the echo with 
absorbers, but then the musicians would not have received reflections from this wall. 
This would potentially have a detrimental effect on ensemble. In this case, the wall 
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Figure 2.34 Scattering from a concave arc compared to an optimized curved diffuser at 3 kHz:
  concave arc, and
  optimized curved diffuser.
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reflection had to be preserved, but the focussing removed, and hence diffusers were 
preferred over absorbers. Orlowski commented that:

For architectural reasons, a concave form was developed for the hall, which ob-
viously gave rise to concerns about focussing. Curve shape optimization was used 
to minimize focussing by the concave wall using a geometrical motif based on an 
amplitude modulated wave. Subjective listening tests to piano and clarinet music 
in the hall indicated a very uniform sound field with no evidence of focussing. 
Furthermore, both instruments produced an expansive sound with a very good 
balance between clarity and reverberance. Musicians found the hall easy to play in. 
The success of this project has led Arup Acoustics to consider curve optimization 
for providing diffusion for other projects, including a rehearsal hall with curvature 
in two dimensions.

See Chapter 10 for detailed discussions of geometric diffusers and optimized diffuser 
design.

2.10 In audience areas – diffuse fields

Canopies of reflectors are commonly seen above audiences in concert halls. An example 
is shown in Figure 2.36. Similar to overhead stage canopies discussed previously, making 
these canopy elements diffusing can reduce coloration and make the distribution of 
sound more uniform across the audience.

But do diffusers have a broader application in auditoria, for example on the side 

Figure 2.35 Optimized curved surface (OptiCurve™) in the Edwina Palmer Hall. (Photo 
courtesy of Arup Acoustics.)
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walls? And how does surface diffusion, dispersion created by diffusers, relate to volume 
diffusion or the diffuseness of a space? If a space is non-diffuse, for instance if the 
absorption is not very evenly distributed or the dimensions of the space are not very 
similar, then applying diffusers to the space will have a number of effects. In the case of 
very disproportioned rooms, such as underground stations, the reverberation time will 
decrease when diffusers are added, because the mean free path is reduced, giving more 
absorption from the increased number of reflections per second (see Section 2.5).

Consider another case, a room with just absorption on the floor and flat hard 
surfaces for the walls and ceiling. This non-diffuse space is likely to have a reverberation 
time different to that predicted by Eyring formulation (Equation 1.5), which would be 
correct for a diffuse space.30 When the room is tall relative to its width and length, then 
some sound will be able to propagate in the horizontal plane without being absorbed 
by the highly absorbent floor, and consequently a longer reverberation time can result. 
Adding surface diffusers to the walls which scatter sound vertically will cause sound 
paths to more evenly involve all the surfaces in a room, and consequently, the floor 
absorption will become more important and the reverberation time will decrease.

Unfortunately, there is no simple formulation to relate the reverberation time in the 
space to the number of diffusers applied. Gerretsen31 outlines a set of formulations for 
reverberation time, which includes both absorption and scattering coefficients. There 
are a large number of equations involved, however, and it is probably just as easy to 
gauge the change in reverberation using a geometric room acoustic model.

As the reverberation time is altered, so is the level of the reverberant sound field. 
However, it would be incorrect to assume that as diffusers are added, the sound levels 
will become identical across the room because the space is more diffuse. This is because 
even in ideal reverberant conditions there is scatter in measured levels.32 Furthermore, 
as discussed below, the early reflected sound can be changed by introducing diffusers, 

Figure 2.36 Optimized curved audience canopy (Waveform® Bicubic) in Patterson Mill 
Middle and High School, MD (CSD Architects, Baltimore, MD; photo cour-
tesy of RPG Diffusor Systems Inc.)
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which can have a significant effect on the sound level. On the other hand, as diffusers 
are added, the reverberation time variation across a space does decrease and decays 
become more linear33–35 (see also the discussion of sound reproduction rooms in 
Section 2.2). Indeed monitoring the difference between the T15 and T30 predicted within 
a computer model and the calculated statistical T60, as acoustic treatment is altered, is 
one indication of how mixing an environment is.

A few people have examined the effect of large scale diffusion on the acoustics of 
concert halls and looked beyond reverberation. Fujii et al.36 examined two similar halls, 
one with side wall columns, which promote scattering, and one without. Chiles37 and 
Jeon et al.38 examined the effect of large scale scattering in physical scale models; Chiles 
also examined computer models. In some of the measurements in some of these studies, 
it appears that the diffusers may also have been partly absorbing the sound, and this 
makes interpreting some of the results more difficult.

For shoebox shaped auditoria, hemispherically-scattering side wall and ceiling 
diffusers promote more early sound being reflected back towards the stage than would 
be the case for flat walls. This gives an increase in clarity and sound level for the front 
seating and a decrease for the audience at the rear of the hall – generally these would 
not be desirable effects. However, it would also be possible to overcome these effects 
by using single plane diffusers or designing diffusers with specific polar responses, for 
instance by using diffusers which just scatter laterally on the ceiling. Putting diffusers 
on the rear wall of a concert hall can help to promote a diffuse space with less effect 
on the early reflected sound distribution. However, this raises the interesting question 
as to whether a diffuse sound field is desirable within a concert hall. While a diffuse 
field makes the prediction of sound behaviour more straightforward, what is currently 
unknown is whether this is desirable for the audience. Do people prefer strong specular 
or diffuse reflections?

Furthermore, the situation is different for other auditoria layouts. For instance, in fan 
shaped halls, the promotion of additional lateral reflections by introducing single plane 
side wall diffusers would be desirable for promoting spaciousness. Incidentally, for 
rectangular halls, one study38 showed that 1-IACC (Internal Aural Cross Correlation25) 
is increased for front and side seats, as might be expected, whereas another study 
showed that IACC is not strongly affected.36

2.11 Barriers and streets

Barriers can be used to reduce noise propagation from roads and railway lines to 
neighbouring houses. One problem that roadside barriers suffer from is double reflec-
tions from high sided vehicles, which enables some of the noise to bypass the barrier – 
this is shown in Figure 1.11a. Another problem is reflections from barriers on one side 
of the road, which then pass over barriers on the other side, as shown in Figure 1.11b. 
Chapter 1 discusses absorption as a solution, but common absorbents wear badly 
under the harsh conditions of high winds, salt and water which are common next to 
busy roads. Diffusers may offer a solution to this problem, as shown in Figure 1.11d. 
By dispersing the sound, the reflection problems are decreased. The difficulty with this 
solution is that sound energy has not been removed by the diffusers, just scattered into 
other directions. There is a risk that wind and other meteorological conditions could 
cause the noise to be scattered or refracted to noise sensitive areas. Consequently, there 
is a need to make this solution robust under a wide range of weather conditions. Recent 
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studies have indicated that trees can be used to reduce turbulence around roadside 
barriers, and so natural wind breaks might enable the performance of diffusing (and 
other) barriers to be more robust to changing meteorology.39

Various studies have been carried out into the how diffusers on top of barriers can 
alter the sound diffraction and hence improve performance,40 however this is probably 
not a cost effective way of improving barrier performance.

Street canyons are roads with high sided buildings on both sides, which form a 
semi-enclosed space where sound levels can build up and noise levels can become 
unacceptable. The surface structures of the buildings forming the street canyon in-
fluence the sound levels. For example, balcony fronts can have the unfortunate effect 
of reflecting sound back down to street level thereby exacerbating noise problems. 
On the other hand, other types of surface roughness may have a role in breaking 
up the reflected sound on the building fronts, causing it to disperse and therefore be 
minimized at street level. Kang41 and Onaga and Rindel42 used geometric computer 
models to examine the influence of the building façades on noise levels in streets. 
Scattering increases the noise level by very small amounts close to the source, but 
further away, they reduce the sound level from traffic by 2–4 dB, because surface 
roughness promotes more cross-street propagation which attenuates rapidly, especially 
if directed upwards!

2.12 Conclusions

In recent decades, an understanding of where and why diffusers should be used has 
been created. While this knowledge is still incomplete, in many common applications 
it is now well established how diffusers should be used. This chapter has detailed 
some of these applications, as well as presenting some of the key principles to be 
further developed later in the book. The remaining chapters concerning diffusers are 
as follows:

• Chapter 4 discusses the measurement of reflections from surfaces, and the 
characterization in terms of scattering and diffusion coefficients.

• Chapter 8 discusses methods for predicting diffuser scattering, presenting both 
complex and simple methods in the frequency and time domains.

• Chapters 9, 10 and 11 deal with the design of key diffuser types: Schroeder, 
geometric and hybrid diffusers.

• Chapter 12 discusses the role of scattering coefficients in geometric room acoustic 
models.

• Chapter 13 rounds off the diffuser chapters by looking at active diffuser 
technologies.
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3 Measurement of absorber 
properties

This chapter covers a variety of methods used to measure and characterize acoustic 
absorbers. For many practitioners, the only important measurement is that which 
gives the random incidence absorption coefficient in a reverberation chamber. While 
this may be the absorption coefficient that is needed for performance specifications 
in room design, other measurements are needed to understand and model absorptive 
materials. For instance, the prediction of the random incidence absorption coefficient is 
problematic, and consequently it is necessary to measure materials in a more controlled 
environment to allow direct comparison between theory and experiment.

The more controlled environment that is often used is the impedance tube, which 
allows normal incidence impedance and absorption to be determined. Less often, but 
nevertheless valuable, are the free field measurements on large area samples done in 
hemi-anechoic spaces. The most common free field method uses a two-microphone 
approach, but this is often only applicable to isotropic, homogeneous samples. 
Consequently, attention has recently turned to using more than two microphones; 
however, the measurements appear to be problematic and very noise sensitive. These 
techniques can be adapted for in situ measurements, the next subject in the chapter.

Chapter 12 discusses how to convert between the absorption coefficients resulting 
from the different measurement methods. It also examines how absorption coefficients 
can be applied to real room predictions as well as their use in geometric room acoustic 
models.

There is also a need to be able to characterize the propagation within the absorbent 
material, to enable theoretical modelling. For instance, the well-known Delaney and 
Bazley empirical model outlined in Chapter 5 requires the flow resistivity and porosity 
of the porous material to be known. For this reason, methods to measure all the key 
parameters that characterize the propagation within the absorbent are outlined.

The intention of this chapter is to provide information on the different measurement 
techniques. It is not intended that each description is a comprehensive standard with 
a foolproof description of how to carry out the measurements. What is intended 
is that the reader should be able to make an informed decision about the different 
techniques described, understand the advantages and disadvantages, and supplement 
the descriptions given here with those available in the referenced literature.

3.1 Impedance or standing wave tube measurement

The standing wave tube enables both the normal incidence absorption coefficient and 
surface impedance to be measured. This is a very useful test method as it enables the 
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absorption coefficient and impedance to be measured under well defined and controlled 
conditions. Consequently, it is frequently used in validating prediction models for 
porous materials. This method has the advantage of only needing small samples (a 
few centimetres in diameter) and this makes it ideal for developers of materials, as the 
alternative is to construct large samples for reverberation chamber tests, which is more 
difficult and expensive. The final key advantage is that the impedance tube method can 
be carried out with relatively simple apparatus in a normal room and does not need 
specialist test chambers. Problems with the method arise when the absorption from 
the small sample is not representative of the behaviour of a large sample, as would 
happen with some resonant absorbers. For this reason, the method is most used with 
local reacting porous absorbers.

Figure 3.1 shows some typical set-ups, and the concept is as follows. A loudspeaker 
generates plane wave propagation in the impedance tube and the plane wave propagates 
down the tube before reflecting from the sample. A standing wave is set up within the 
tube. The impedance of the sample alters how sound is reflected and, by measuring 
the resulting standing wave, it is possible to calculate the normal incidence absorption 
coefficient and surface impedance of the sample. This is such a common technique in 
acoustics that it has been enshrined in international standards.1,2

The necessity for plane wave propagation imposes many limitations on the system 
which are discussed as follows.

1.  The losses into and through the tube should be minimized so that the plane waves 
propagate without significant attenuation. Consequently, thick metal is a common 
construction material for the mid- to high frequency ranges of most concern in 
building design and noise control. For impedance tubes that are to work at bass 
frequencies, more extreme construction is needed to prevent significant losses from 

Figure 3.1 Set-ups for impedance tube measurement. Top: probe tube for standing wave 
method; bottom: two-microphone technique.
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the tube. For example, thicker walls are required or steel-lined concrete tubes can 
be used; these can work down to the limit of human hearing (20 Hz). Whatever 
the size, to minimize losses the tube should be smooth on the inside and clean.

2.  The tube should have constant cross-section over the measurement region where 
the sample and microphone positions are located. The actual shape is not that 
important; square and circular tubes are most popular. Although circular tubes 
seem to be less prone to cross-mode problems within porous absorbents, square 
tubes are useful, as in some cases square samples are easier to construct.

3.  The loudspeaker should be a few tube diameters (or widths) from the first 
microphone position so that any cross modes generated by the loudspeaker have 
decayed away. It is sometimes necessary to place absorbent at the loudspeaker end 
of the tube to reduce the effect of resonances within the impedance tube.

4.  The microphone positions should not be too close to the sample so that any 
evanescent waves generated on reflection have had time to die away. For a homo-
geneous, isotropic sample that means the first measurement microphone should 
be at least half a tube diameter (or width) away. For samples that are structured 
and anisotropic, no microphones closer than two diameters away from the sample 
surface should be used.

5.  The highest frequency, fu, that can be measured in a tube is then determined by:

 (3.1)

where d is the tube diameter or maximum width and c the speed of sound. This is a 
statement that there should not be any cross modes in the tube; the first mode appears 
when half a wavelength fits across the tube. The limitation imposed by Equation 3.1 
means that to cover a wide frequency range, several different impedance tubes of 
different diameter or width are required.

It is possible to measure at higher frequencies if multiple microphones are used across 
the width of the tube. The sound field within the tube can be considered to be a sum 
of the plane wave and higher modes, in a similar way to how a room sound field is 
decomposed into its modes. In a circular tube and an isotropic sample, one additional 
microphone enables the impedance of the sample for the plane wave and first cross 
mode to be determined (circular symmetry can be exploited to reduce the number of 
additional microphones in this case). For a square tube, four microphones can be placed 
as shown in Figure 3.2, and the measured signals summed.3 In this case the first and 
third cross modes in the tube in each direction cancel, while the microphones are at 
nodes of the second order mode, so leaving the fourth order mode to dominate. This 
quadruples the limit shown in Equation 3.1. However, the disadvantage of the multi-
microphone method is that for frequencies where cross modes dominate, the sample 
is not receiving plane waves, so the absorption coefficient measured is harder to relate 
to prediction models.

The experimental detail that is most critical is the requirement for the sample to be 
cut and mounted correctly. It is vital that the sample fits snugly into the tube. Any gaps 
around the edge must be filled and sealed, otherwise the gaps will allow absorption by 
the edge of the sample and the measured absorption will be too high. Worse still, if the 
small gaps open up to an air cavity behind, a Helmholtz device could be formed, and 
the absorption overestimated by a large margin. The normal way of providing proper 
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sealing is to use petroleum jelly (Vaseline®), Plasticene® or mastic to fill the edges of 
the sample. It is also important, however, not to wedge porous absorbers into the tube 
– this changes the mechanics of the absorber frame and can lead to incorrect measure-
ments due to the constrained vibration of the absorber frame.4 Rapid variations in the 
impedance data is seen around the resonant frequency of the frame. Consequently, the 
sample should be 0.5–1 mm smaller than the diameter (or width) of the tube;5 then the 
impedance and absorption coefficient measured are effectively the same as a sample 
with infinite lateral dimensions.

It is also important that the rear of the absorber is properly terminated. Air gaps 
between the absorber and the backing plate will lead to excess absorption being 
measured, unless of course it is planned to mount the absorber with an air gap, in 
which case the measurement would be correct.

The impedance tube is not often useable for extended reaction absorbers, unless the 
impedance tube happens to coincidentally be the same size as the extended reaction 
device. For instance, the performance of a membrane absorber is usually dependent on 
the mounting of the membrane. It is not possible just to mount a smaller membrane 
absorber in an impedance tube, and expect the same performance as the larger 
device.

3.1.1 Standing wave method

The advantage of the standing wave method is that it is very dependable, and relatively 
idiot proof. Unfortunately, it only measures one frequency at a time and the procedure 
for locating minima in the standing wave, which is needed to get phase information, is 
rather slow and so measuring a large number of frequencies is tedious. It is, however, 
more robust and reliable than the transfer function method discussed in Section 3.1.2 
and is a useful second check on results from that method.

If plane waves are assumed to propagate in the tube, then the theories outlined in 
Chapter 1 for the reflection of sound from a plane infinite absorbent can be used. The 
steady state pressure in the tube is given by:

d/4 d/4 

d/4 

d/4 

d/2 

Figure 3.2 Set-up for impedance tube measurement at higher frequencies using four micro-
phones.
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 (3.2)

where R is the reflection coefficient; k is the wavenumber; the sample is assumed to be 
at z = 0, and A is a complex constant. The first term represents the incident wave and 
the second the reflected wave.

There are two standard approaches for sampling the pressure within the tube, the 
first is the standing wave ratio method and the second is the transfer function technique. 
For the standing wave method, the minimum and maximum pressures are measured. 
The maximum pressure pmax occurs when the first and second terms in Equation 3.2 
are in phase, and the minimum pressure pmin occurs when they are completely out of 
phase. In terms of formulations:

 (3.3)

The standing wave ratio s is defined as the ratio of pmax to pmin and is given by:

 (3.4)

This formulation can be rearranged to allow the magnitude of the reflection coefficient 
to be obtained:

 (3.5)

From the reflection coefficient it is possible to get the absorption coefficient as α = 
1 – |R|2 – see Section 1.4.2.

To find the pressure maximum and minimum, it is necessary to have a probe 
microphone mounted on a moving trolley. The advantage of this formulation is that 
no pressure calibration is needed, provided the equipment remains time invariant, as 
any factors relating the acoustic pressure to the voltage monitored by the measurement 
equipment, such as the effects of the probe tube, cancel out.

By noting the distance of the first minimum from the sample, zmin, and considering 
the necessity for the incident and reflected phase to be different by exactly π at this 
position, it is possible to also calculate the impedance of the sample. The phase angle 
of the reflection coefficient is given by:

 
(3.6)

Using Equation 1.22, it is then possible to obtain the normal incidence surface im-
pedance.

Moving back from the sample, the first minimum met should be measured, and then 
the next maximum. This minimizes the effect of tube losses. It is possible to add loss 
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factors into Equation 3.2 if the tube absorption is significant, and formulations are 
given in the standard1 to do this. It is far better, however, to make sure the losses are 
negligible in the first place. For samples with low absorption, this measurement becomes 
rather inaccurate as the measured standing wave ratio has a large error associated with 
it, as the pressure minimum becomes too small to be accurately measured.

3.1.2 Transfer function method

Equation 3.2 has two unknowns: the magnitude and phase of the reflection coefficient. 
By measuring the pressure at two points in the tube, it is possible to set up and solve 
simultaneous equations for the reflection coefficient and from there get the impedance 
and absorption coefficient. This is the principle of the transfer function, often called the 
two-microphone method. (Although, as this is often used with one microphone which 
is moved, calling this a two-microphone method is nowadays rather misleading!)

The primary advantage of using this approach is that it obtains the absorption co-
efficient and impedance of the surface for all frequencies (within limits) with only a 
couple of quick measurements. It is therefore much more efficient than the standing 
wave method. It is also a method where if something is done wrong, for example the 
microphone positions are incorrect, then the formulations yield results which are clearly 
unphysical – it is easy to spot common measurement errors with this approach.

The transfer function between two microphone positions in the tube is measured 
as shown in Figure 3.1. Remembering that the transfer function is simply the ratio of 
pressures, H12 = p(z2)/p(z1), and applying Equation 3.2, the transfer function between 
microphone positions 1 and 2 is given by:

 (3.7)

where z1 and z2 are the positions of the microphones shown in Figure 3.1. Rearrangement 
then directly leads to the complex pressure reflection coefficient:

 (3.8)

Using the equations set out in Section 1.4.2, the absorption coefficient and surface 
impedance are then obtained.

There are restrictions on the microphone spacing. If the microphones are too close 
together, the transfer function measured will be inaccurate because the change in 
pressure will be too small to be accurately measured. This leads to a lower frequency 
limit, fl, for a given microphone spacing |z1 – z2|:

 (3.9)

Problems also arise, if the microphone spacing becomes too wide. As the spacing ap-
proaches a wavelength the simultaneous equations become impossible to resolve as the 
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pressure measured at both microphones is identical. This leads to an upper frequency 
limit fu due to microphone spacing given by:

 (3.10)

Consequently, there are two upper frequency limits given by Equation 3.1 and 3.10, 
and the lowest figure should be taken.

The lower and upper frequency limits mean that to cover a reasonable number of 
octaves it is often necessary to use more than two microphone positions in a tube; three 
positions are typically used. Three positions give three possible microphone spacings. 
By appropriately setting the frequency ranges for each of the spacings, it is possible to 
cover a wider frequency range.

There is a choice of methods for measuring the transfer function in Equation 3.7. 
A dual channel FFT analyzer can be used with a matched pair of microphones, using 
a white noise source. In that case, it is necessary to compensate for differences in the 
microphone responses by measuring once, then interchanging the microphones and 
measuring again. A more efficient method is to use a deterministic signal such as a 
maximum length sequence6 or swept sine wave.7 This means that one microphone can 
be used to measure the transfer function to each microphone position and the ratios 
of these transfer functions are used to obtain Equation 3.7. This negates the need for 
matched microphones. Using a deterministic signal rather than white noise also removes 
the need for time consuming averaging.

It is important that any unused holes are blocked, and that microphones are mounted 
flush to the tube sides. Better results appear to be obtained for fixed microphones 
than for a probe microphone. The likely reason is that positioning the microphone 
accurately is crucial, and this is harder to obtain with a probe. This problem can be 
overcome by measuring many different microphone positions along the impedance 
tube with the probe and averaging the different results, but this is rather tedious and 
not recommended.

Horoshenkov et al.8 carried out a round robin test on impedance tube measurements 
involving seven acoustics laboratories. They used three samples; reconstituted porous 
rubber, reticulated foam and fibreglass and Figure 3.3 shows some of the results. 
The mean absorption coefficient is shown for each material, along with dotted lines 
indicating the 95 per cent confidence limit in any one laboratory measurement.

The biggest errors are seen for the reconstituted porous rubber in the top graph, 
however, and this is most likely due to the fact that the sample varies considerably even 
when taken from the same block of material, so the large variations probably reflect 
true sample variation and not just experimental error. The fibreglass results shown in 
the bottom graph are similarly affected by sample variation. The foam samples were 
more consistent, but the effects of mounting were seen. Individual laboratory results 
showed patterns of minima and maxima indicative of structural resonances. This 
evidence is somewhat lost in producing the average plots in Figure 3.3, but the increase 
in errors around 2,500 Hz are due to this effect.
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3.1.3 Least mean square method

This is essentially an adaptation of the transfer function method. It is usual to use 
three microphone measurements to cover the frequency range an impedance tube 
offers. There will be a region of frequency overlap where two sets of measurement 
results are applicable, and each will yield a slightly different answer. By applying a 
least mean square approach it is possible to gain a formulation which produces one 
unambiguous result from the three (or more) microphones.9 The complex reflection 
coefficient is given by:

 

(3.11)
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Figure 3.3 Comparison of impedance tube measurements of the absorption coeff cient 
for three materials at up to seven laboratories. Top graph: reconstituted 
porous rubber; middle: reticulated foam, and bottom: fibreglass. The mean 
absorption coefficient is shown, along with dotted lines indicating the 95 per 
cent confidence limit in any one laboratory measurement. <3,500 Hz data 
from seven laboratories is used; 3,500–4,000 Hz from six laboratories; and 
>4,000 Hz from four laboratories. (Adapted from Horoshenkov et al.8, graphs 
kindly prepared by F-X. Bécot.)
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where Hnm is the transfer function measured between microphones n and m; zn and zm 
the distances of the nth and mth microphones from the test specimen, and * indicates 
complex conjugate.

3.1.4 Transmission measurements

The impedance tube method can also be extended to allow the measurement of 
transmission through materials. Figure 3.4 shows a typical arrangement. The right 
hand side might be an anechoic termination, generated by a thick porous layer of 
gradually increasing flow resistivity. The quality of the anechoic termination is crucial 
for accurate measurement,10,11 because any reflected sound will pass back through the 
test material and be measured by microphones 1 and 2 as reflections from the front of 
the test sample. (This leads to a transmission coefficient spectrum which inaccurately 
oscillates with respect to frequency due to interference.) Provided the sample being 
tested has low flow resistivity and high porosity, a very good anechoic termination will 
yield accurate results; indeed in theory a fourth microphone is not even needed.

However, a more robust technique is the two-load method, which can cover a 
wider range of samples. Two test conditions are measured, one where the right hand 
termination is rigid, and the other where it is open. The formulations for this method 
are derived below.12

The pressure amplitudes A–D of the various plane wave components in the tube are 
defined in Figure 3.4. To the left of the sample, the pressure and velocity are given by:

 (3.12)

and to the right of the sample:

 (3.13)

Using the pressures measured at the four microphones, p(z1) … p(z4), it is possible to 
derive expressions for the pressure amplitudes:

 (3.14)

Once the amplitudes are calculated from the measured pressures it is then possible to 
evaluate the pressures and velocities on the front and rear of the test sample, at z = 0 
and z = –d, using Equations 3.12 and 3.13. The propagation through the test sample 
can be described by a transfer matrix, as described in Section 1.5.1:
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 (3.15)

where the pressures p and velocities u are known. To obtain the transmission coefficient, 
the four transfer matrix components, T11, T12, T21 and T22, which determine how the 
sample reacts to sound, are needed. By making two sets of measurements, with different 
termination conditions at the right hand end of the tube, enough independent equations 
are generated to enable the matrix components to be solved:

 (3.16)

where a superscript r indicates the measurements with a rigid termination and o the 
measurements with the open end (roughly a pressure release case). It is vital that the 
termination impedances are very different across the frequency range of interest, or 
otherwise the additional equations derived will not be independent and the solution 
will become inaccurate. These sets of simultaneous equations can be solved to yield 
the transfer matrix elements.

These transfer matrix elements determine what happens to sound as it propagates 
through the test sample, but they involve velocities, and the transmission loss is defined 
purely in terms of a ratio of pressures. Consequently, some further work is needed 
to get the transmission loss from the matrix elements. The pressures at z = 0 and z = 
–d from Equations 3.12 and 3.13 can be substituted into Equation 3.15. After some 
manipulation, it is possible to derive a new matrix which relates the pressure amplitudes 
in the system:

 (3.17)
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This equation is true for any termination condition. From inspection of Figure 3.4, the 
transmission loss (TL) is given by 20 log10(|A/C|) which is easiest to work out when 
there is a perfect anechoic termination, in other words when D = 0. Consequently, the 
transmission loss is given by:

 (3.18)

The above formulations are sufficient for carrying out the calculation, but with some 
algebraic manipulation, it is possible to derive a single equation for the transmission 
loss, which bypasses the need to explicitly calculate the transmission matrix elements. 
Equation 3.17 shows that it is possible to relate the pressure amplitudes by a simple 
matrix. Consider the amplitudes derived from the two different measurements in a 
matrix form:

 
(3.19)

where the superscripts denote the different measurement conditions. The element a11 
gives the transmission loss (again, by considering the case D = 0). So by manipulating 
the simultaneous equations represented in Equation 3.19 it is possible to show that:

 (3.20)

So the transmission loss can be calculated directly from the pressure amplitudes under 
the different measurement conditions using this one formulation.

3.2 Two-microphone free field measurement

The disadvantage of the impedance tube is that it does not readily allow oblique 
incidence measurement. In contrast the two-microphone free field method allows this to 
be done. By its very nature, the test method needs a large sample, which can be difficult 
to produce. It also needs an anechoic or hemi-anechoic space for the measurement. 
This method, like the impedance tube, is of most use to porous absorber designers or 
modellers.

The method can be thought of as an extension of the transfer function, impedance 
tube method. Readers unfamiliar with the impedance tube method should read Section 
3.1 before proceeding here. The technique is most straightforward for homogeneous, 
isotropic materials. Consider a large sample of absorbent being irradiated by a loud-
speaker a long way from the surface as shown in Figure 3.5. The measurement can be 
done in an anechoic or hemi-anechoic chamber; it can even be done in a large room 
providing that time windowing is used to remove unwanted reflections from other 
boundaries. It is assumed that plane waves are incident on the surface. Furthermore, for 
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large isotropic, homogeneous samples, it can be assumed that the reflected sound is 
also a plane wave. In which case the equations set out in Section 3.1.2 for the transfer 
function measurement in the impedance tube can be applied directly to the free-field case.

Some practical details need careful consideration. Although in theory the sample 
should be infinite, in reality the sample will be finite in extent and so edge diffraction 
becomes important. The diffraction from the edges at low frequencies causes the 
reflected wave to no longer be planar, and so the simple theories no longer apply. A 
rough lower frequency limit is when half a wavelength fits across the smallest sample 
dimension. Consequently, samples are typically several square metres in area. When 
large samples are not available, one solution is to bring the source close to the surface, 
say 20 cm away, so the edge waves become less significant.13 In which case, it is necessary 
to use spherical wave equations rather than the plane wave formulations given above. 
The drawback of using spherical wave formulations is that the interpretation of the 
measured impedance becomes less straightforward.

Returning to the plane wave case, the first microphone is typically 5 mm from the 
surface, and the second 15 mm from the surface; the lower and upper frequency limits 
discussed for the impedance tube related to microphone spacing are still relevant. The 
microphones must be small enough that they do not cause significant disturbance to 
the acoustic sound field. While it is possible to use two microphones, one microphone 
that is moved may be preferred as it disturbs the sound field less significantly than a 
microphone pair. It also removes the need for calibration. A deterministic test signal 
such as a maximum length sequence or swept sine must be used in this case.

The method can be extended to deal with oblique incidence, in which case the 
formulations should be re-derived. For an incident angle of ψ, the transfer function 
between the two microphones positions is given by:
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where it has been assumed that the two microphone positions have the same x and y 
displacement in the coordinate system defined in Figure 3.5. A rearrangement leads 
directly to the reflection coefficient:

 (3.22)

The impedance can then be calculated using Equation 1.22 and from Equation 1.24 
the absorption coefficient at that particular angle of incidence can be found.

Problems arise for large angles of incidence. As the angle of incidence increases, the 
effects of edge diffraction become more significant at higher frequencies. Consequently, 
very large angles of incidence are difficult to measure due to the effects of edge 
scattering unless very large sample sizes are available.

3.3 Multi-microphone techniques for non-isotropic, 
non-planar surfaces

For non-isotropic or non-planar surfaces, it is still possible to carry out a free field 
measurement using methods similar to those detailed in Section 3.2, although the system 
becomes more elaborate and rather sensitive to measurement error. The formulations 
for the two-microphone free field method have assumed that the dominant reflected 
wave is a plane wave, which is true for isotropic, homogeneous, infinitely large planar 
surfaces. As soon as the surface becomes rough, or there are impedance variations, 
then there is potential for non-plane wave propagation. For example, if a periodic 
impedance variation is considered, a set of grating or diffraction lobes in non-specular 
directions are generated. (See for example Figure 9.3, where the Schroeder diffuser 
generates 11 lobes.) To measure the absorption in the periodic case, it is necessary to 
measure the magnitude and phase of each of these reflected waves. This requires the 
measurement using more than two microphone positions, because there are additional 
unknowns – the magnitude and phase of each of the grating lobe waves – to be resolved. 
To measure the eleven propagating waves seen in Figure 9.3, 12 microphone positions 
would be needed. In reality, it is unlikely that this case could be measured, because 
multi-microphone systems become prone to measurement noise and errors,14,15 as the 
number of microphones increases.

The next section details a multi-microphone method for surfaces with periodic im-
pedance variation14 to give an idea of how such a multi-microphone system might work. 
Although it is difficult to implement and get accurate measurements, it does enable 
incident angle dependent absorption to be measured.

3.3.1 Multi-microphone free field measurement for periodic surfaces

There will be multiple reflected waves, not just the plane waves considered in the 
two-microphone method. By using more than two microphone positions, it is possible 
to measure the amplitude and phase of these reflected waves. The set-up is shown in 
Figure 3.5. The pressure at the mth microphone, pm measured at coordinates (xm, zm), 
is given by:
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(3.23)

The first term on the right hand side is an incident plane wave pi and the second term 
the scattered or reflected pressure. In this equation:

An are complex coefficients describing each of the reflected waves; Pi is a constant; ψ is 
the incident angle; k is the wavenumber; λ is the wavelength; and W is the width of one 
period. The surface is periodic and (assumed) infinite so that a Fourier representation 
of the reflected sound field is used. Readers are referred to Chapter 7 for more details 
of the theory.

The scattered pressure is an infinite sum of waves, with complex coefficients An. Not 
all of these waves will propagate into the far field. The waves which are confined to the 
near field, the evanescent waves, need not be modelled, which means the sum over n is 
finite. The upper and lower limits for the sum in Equation 3.23 are determined by:

 (3.24)

Let the lower limit be denoted n1 and the upper limit n2; the number of coefficients to 
be determined must be small for this measurement to work.

The absorption coefficient is found by taking one minus the ratio of the reflected to 
incident energy, which gives:

 (3.25)

When only the n = 0 term exists, then a two-microphone approach can be used as the 
only radiating wave is the plane wave term. When more than one term is present, |n1|∨ 
|n2|>0 then more microphones are needed. In this case N = (|n1| + |n2| + 2) points need to 
be measured since the transfer functions between two measured positions will be used.

In the data processing, it is convenient to use the transfer functions between adjacent 
measurement positions Hm,m+1 = pm / pm+1:

 

(3.26)

This means a N – 1 set of simultaneous equations can be obtained in terms of An/Pi:
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 (3.27)

Once the simultaneous equations have been formed, these can be solved to give 
An/Pi, which can be substituted into Equation 3.25, and gives the absorption coefficient 
after a little manipulation.

The choice of measurement positions is critical. If the microphone is only allowed 
to traverse the z direction, then critical frequencies occur where there are insufficient 
unique simultaneous equations to resolve the coefficients. These critical frequencies 
manifest themselves as frequencies for which nonsensical absorption coefficients 
are obtained. These critical frequencies can be avoided by changing the microphone 
position in z and x. The typical spacings used give microphones 5–10 cm apart.

The multi-microphone method is very sensitive to evanescent (non-propagating) 
waves. The microphone must be far enough away from the sample to prevent the 
measurement of evanescent waves, as these have been neglected in the above theories, 
but if the microphone is too far from the surface, diffraction from the sample edges will 
cause the measured pressures to be inaccurate. The multi-microphone method is much 
more noise sensitive than the two-microphone method. Very accurate microphone 
positioning is needed. Others looking at multiple microphone techniques have found 
similar noise sensitivity.15

Figure 7.11 shows an example measurement result. It is compared to two prediction 
models. Good accuracy is achieved with the multi-microphone measurement system in 
this case. At low frequencies only two microphone positions are used as there is only 
one plane wave reflection. At mid-high frequencies three microphone positions are 
needed as an additional reflected wave is present.

3.4 Reverberation chamber method

In most applications, the sound will be incident on an absorptive material from a 
multitude of incident angles at once. It is not efficient to laboriously measure the 
absorption coefficients for all angles of incidence in the free field and reconstruct these 
into a random incidence absorption coefficient (although this can be done, as is dis-
cussed in Chapter 12). Consequently, a quicker method is needed, and this is afforded 
by the reverberation chamber method.16 The random incidence absorption coefficient is 
the parameter used most in the design of spaces to specify the absorption performance 
of materials. It is well known and defined; however, it is notoriously difficult to 
predict. So while the random incidence absorption coefficient is needed to enable 
room design, it is not very useful for those interested in validating prediction models.

The reverberation chamber test requires large sample sizes and a specialist test 
room, and so is expensive to undertake. It also only gives absorption coefficients; the 
impedance cannot be measured. Consequently, developers of absorptive materials will 
often use the impedance tube to build up an understanding of the material properties 
on small samples, before undertaking reverberation tests.

The reverberation time of a room is dependent on the total absorption in the room 
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– see Equation 1.1. Consequently, by measuring the reverberation time of a room before 
and after a sample of absorbent is introduced, it is possible to calculate the random 
incidence absorption coefficient. It is necessary to have defined acoustic conditions for 
the test, and the normal technique is to try and generate a diffuse field. A diffuse field 
can be roughly defined as requiring the reflected sound energy to be the same across the 
whole room and the energy to be propagating evenly in all directions. To achieve this, 
reverberation chambers often use diffusers in the volume of the room, and the chamber 
walls are often skewed (splayed). Furthermore, the room should be of a certain minimum 
size, and room dimensions should be irrationally related to reduce the influence of 
room modes. The minimum requirements are given in the appropriate standard.16

Despite these measures, a diffuse field is not completely achieved, and consequently 
the reverberation time is position dependent. For this reason, it is normal to use multiple 
source and receiver positions and to average the results to reduce the effect of non-
diffuseness. The source is normally placed in the corner of a room, pointing into the 
corner, because it maximally excites the modes of the room and reduces the amount of 
direct radiation from the loudspeaker to the test sample. Receivers should be at least 
1 m from the room boundaries, room diffusers and the sample, and should be chosen 
to obtain a diverse sampling of the room volume. Even with all these measures, the 
measured absorption coefficients are often more inaccurate at low than high frequencies 
due to modal effects.

The reverberation time before the sample is introduced is given by:

 (3.28)

where V is the room volume, c the speed of sound, α0 the average absorption coefficient 
of the empty room and S the surface area of the room. m1 allows for air absorption in 
the room and typical values are shown in Table 3.1.

Complete formulations for air attenuation can be found in ISO 9613-2.17

The reverberation time after the sample is introduced is given by:

 (3.29)
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Table 3.1 Air absorption constant m1 at 20°C and normal atmospheric pressure in 10–3 m–1

Relative
humidity 
(%)

Frequency (Hz)

63 125 250 500 1000 2000 4000 8000

20 0.06 0.16 0.32 0.6 1.5 4.96 17.2 50
30 0.044 0.14 0.33 0.58 1.15 3.25 11.26 38.76
40 0.035 0.12 0.32 0.6 1.07 2.58 8.39 29.94
50 0.028 0.1 0.3 0.63 1.07 2.28 6.83 24.24
60 0.024 0.088 0.28 0.64 1.11 2.14 5.9 20.48
70 0.021 0.077 0.26 0.64 1.15 2.08 5.32 17.88
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where Ss is the surface area and αs the absorption coefficient of the sample. By 
rearranging Equations 3.28 and 3.29 it is possible to obtain the absorption coefficient 
of the sample. If ISO 354:1985 is followed, the factor [S – Ss] is approximated to S, 
which simplifies the end formulation.

The current standards are based on Sabine’s formulations as used above. It is well 
known that this equation becomes inaccurate for large absorption coefficients, in 
which cases other formulations like the ones derived by Eyring and Millington can 
be used (these were given in Equations 1.5 and 1.6). Indeed, Chapter 12 discusses 
how some geometric room acoustic modellers are advocating the use of alternative 
reverberation time formulations to give better room predictions. While it can be argued 
that using other reverberation time formulations produces more correct answers, the 
databases of absorption coefficients available to designers have been derived from 
Sabine’s formulation. Consequently, while it is known that Sabine’s equation produces 
systematic (or bias) errors, it continues to be industry practice to use this approach. 
Appendix A gives a table of typical measured absorption coefficients for common 
materials.

The reverberation times can be measured by interrupted noise, maximum length 
sequences or swept sine waves. Maximum length sequences allow rapid measurement, 
but problems in getting sufficiently long decays can arise due to non-linearities in 
loudspeakers.18

To get an accurate measurement, it is necessary to have a big difference between 
T0 and T1. This necessitates a large sample area of 10–12 m2. Even with such a large 
sample, the accuracy is compromised due to edge effects. Sound is diffracted around 
the edges of the sample, which usually leads to excess absorption. It is normal practice 
to cover the edges of the sample and to use rectangular samples to reduce edge effects. 
Nevertheless, even with the edges covered, absorption coefficients greater than 1 can 
be measured. Chapter 12 discusses this further, including how these edge effects might 
be compensated for in real room predictions.

It is also possible to measure discrete objects, for example people. They are arranged 
randomly around the room, and a total absorption per object calculated from the 
reverberation times.

Given the standard deviations of the reverberation times T0 and T1, it is possible to 
calculate the random experimental error. The standard deviations are calculated from 
the set of reverberation times for all source and receiver combinations. If the standard 
deviation of the reverberation time measure T0 is σ0, then the 95 per cent confidence 
limit is given by:

 (3.30)

where n is the number of source and receiver pairs. (It is assumed that n is sufficiently 
large that two standard errors is equivalent to the 95 per cent confidence limit.) A 
similar relationship exists for T1. The accuracy (95 per cent confidence limit) of the 
empty room average absorption coefficient is given by:

 (3.31)
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where the effect of inaccurate estimation of air absorption has been assumed to be 
smaller than the effect of reverberation time variation between measurement positions. 
The accuracy of sample absorption is given by:

 
(3.32)

While good repeatability within a laboratory can be achieved, there are reproducibility 
problems between laboratories. The measured absorption coefficients can vary greatly 
from laboratory to laboratory. Figure 3.6 shows the average absorption coefficient for 
an identical fibreglass sample measured in 24 reverberation chambers. The error bars 
indicate the 95 per cent confidence limits in one of the laboratory measurements. To 
explain this figure further, when the sample was sent to one laboratory, 95 per cent of 
the time the absorption coefficient would be within ±0.2 of the mean value at 1 kHz. 
This indicates that the absorption coefficients could vary by as much as 0.4 between 
two different laboratories, a huge error in the absorption coefficient.

The reverberation chamber method can also be used to measure single items.16 
Sakagami et al.19 detail a method for measuring absorbents hung in the reverberation 
chamber, as might happen in the case where a porous absorbent is hung in a factory 
to reduce reverberant noise levels.

Chapter 12 takes the discussion of random incidence absorption coefficients further, 
examining how the values measured in laboratories are used in predictions, including 
their use in geometric room models. The chapter also quantifies the effects of edge 
absorption and sample size. Seating is a common absorbent with very significant edge 
absorption, and the measurement of this particular surface is dealt with in the next section.
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Figure 3.6 Comparison of measured absorption coefficients for a single sample in 24 
labora tories. The mean absorption coefficient across all laboratories is shown, 
along with error bars indicating the 95 percent confidence limit in any one 
laboratory measurement.
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3.4.1 Measurement of seating absorption

The reverberation time in a concert hall is dominated by the absorption of the seating 
and audience and it is essential that these can be measured or predicted accurately in 
the early stages of design. The wrong estimation of seating absorption has been blamed 
for acoustic problems in many halls, and consequently a measurement procedure is 
given here. Davies et al.20 compared seating absorption coefficients in a reverberation 
chamber and in concert halls for 10 different cases, and showed that the Kath and Kuhl 
method21 is best for estimating seating absorption in a real hall. Beranek22 showed that 
it is best to calculate seating absorption coefficients based on absorption per unit floor 
area rather than by absorption per seat.

The aim of measuring the random incidence absorption coefficients of a small sample 
of seats in a reverberation chamber is to predict the total absorption that a larger area 
of the same seats will exhibit when installed in an auditorium. There are problems, 
however, because the small sample of chairs in the reverberation chamber (say 24), is 
unrepresentative of the larger block of seating in the auditorium, because edge effects 
are overemphasized in the reverberation chamber measurements.

The Kath and Kuhl method involves placing the seating in the corner of the reverberation 
chamber in rows with their intended row spacing. The exposed edges are obscured with 
barriers for some of the measurements. The barriers need to be massive and stiff to reduce 
low frequency absorption. The barriers should be at least as high as the seating, and 
higher if any audience is present for an occupied measurement. Excessive extra height 
(say, more than 100 mm above the top of the seating for the unoccupied case) should be 
avoided. The set up is schematically shown in Figure 3.7. Though it seems that the array 
is mirrored in the adjacent walls of the chamber, thus effectively increasing its size, it is 
not effectively infinite as Kath and Kuhl suggested. Diffraction effects will still be present 
and so the measured absorption coefficient may still vary with sample size.

The concept is to separately measure three absorption coefficients by carrying out 
measurements with and without barriers. The measurements are:

• for an infinite array with no edges, yields an absorption coefficient α∞, with side 
and front barriers in place;

• for the front edges, αf, by measuring with the side barrier only in place and 
combining the result for α∞; and
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wall 

wall 

front 
barrier 

side 
barrier 

seating in here 

Figure 3.7 Set-up for the Kath and Kuhl method for measuring seating absorption.
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• for the side edges, αs, by measuring with the front barrier only in place, and 
combining with the result for α∞.

Then in the hall, if the areas of the front edges Sf, side edges Ss and plan area Sp are 
known, the absorption coefficient of the audience block is given by:

 (3.33)

In the reverberation chamber the absorption coefficients α∞, αf, and αs are determined 
by the following formulations. First with both the front and side barriers in place the 
infinite array absorption coefficient is obtained:

 (3.34)

where A1 is the total absorption of the sample with both barriers in place, and the λ/8 
terms correct for pressure doubling at the chamber walls, where λ is the wavelength of 
the centre frequency in the octave band.

With an additional measurement of the total absorption A2 with the front barrier 
missing, the absorption of the front edge is determined.

 (3.35)

Finally, with an additional measurement of the total absorption with the side barrier 
missing A3, the absorption of the side edge is determined.

 (3.36)

The corner placing of the seats is advantageous because it increases the effective size 
of the array. However, there is a disadvantage: the pressure in a reverberant field is 
increased at the boundaries,23 so the absorption coefficients measured will be higher 
than those found when the sample is in the centre of the chamber. To compensate for 
this, Kath and Kuhl proposed24 that the absorber areas used in the calculations should 
be increased by strips of width λ/8. This extra absorbing area accounts for the increase 
in measured total absorption due to the increase of up to 3 dB in sound pressure level 
close to the wall. In a corner, there is an increase of up to 6 dB, and a correction of 
(λ/8)2 is needed. This is the reason for the extra terms in the denominators of the above 
formulations.

Figure 3.8 shows a comparison of the measured absorption coefficient in the audi-
torium and a prediction from the reverberation chamber results. Good prediction 
accuracy is achieved for this case. Discrepancies found by Davies et al.20 for other halls 
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were likely to be due to the non-diffuseness of the auditoria and indefinable changes 
in the hall between the without and with seating measurements.

Bradley25 also suggested a seating absorption measurement method which attempts to 
take account of the variation of seating absorption with sample size. This involves making 
measurements on five or six differently sized arrays of seats and then extrapolating to 
the expected absorption for large seating blocks in auditoria. Although this is accurate, 
it requires more tests than the above method.

3.5 In situ measurement of absorptive properties

There is great interest in being able to measure the absorption coefficient and surface 
impedance of products in situ. To take one example, in geometric room acoustic models 
the absorption coefficients of surfaces are required, but how can these be determined if 
the room is already built? It is for this sort of problem that in situ techniques have been 
developed. Indeed, in situ techniques for absorption measurement can be traced back 
as far as 1934.26 For those interested in the historical context of in situ measurement, 
the paper by Nocke and Mellert26 gives a comprehensive reference list of the important 
literature.

One possible technique is to use the two-microphone free field method outlined in 
Section 3.2. If the surface to be tested is large, homogeneous, isotropic and planar, 
and the unwanted reflections from other surfaces can be removed by time gating 
(windowing), then this process has been shown to work and give accurate results.27 
This process will fail if the unwanted reflections cannot be removed, or non-plane wave 
reflections are significant, which might arise if the surface is too small, or if the surface 
to be tested is inhomogeneous.
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Figure 3.8 Random incidence absorption coefficient measured in an auditorium com-
pared to a prediction based on a Kath and Kuhl reverberation chamber meas-
urement. 

  prediction for full auditorium seating based on reverberation chamber 
measurement; and

  full auditorium measurement (data from Davies et al.20).
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Other techniques try to separate the incident and reflected sound from a surface 
by arrival times. This is schematically shown in Figure 3.9. An impulse response 
is measured and the reflected and incident sound isolated by applying rectangular 
windows. From this the reflection coefficient is calculated. To achieve this, however, 
requires considerable distance between the microphone and the surface, which means 
that problems often arise because of edge reflections from the test surface and unwanted 
reflections from other surfaces. Very large surfaces are needed otherwise there is poor 
accuracy at low frequencies. Consequently, while this technique is potentially accurate, 
its range of applicability is limited.

A more promising technique was developed by Mommertz,28,29 as this exploits a 
subtraction technique which enables the microphone to be placed close to the test 
surface. The technique appears in standards concerning measuring noise barriers30 and 
road surfaces.31 This allows measurement from 250 Hz to 8 kHz for normal incidence 
on plane surfaces greater than 4 m2. The low frequency accuracy is compromised for 
oblique incidence or smaller samples. The test arrangement is shown in Figure 3.9. The 
sound source is connected to the microphone by an anchored tube to ensure that the 
distance between the source and microphone remains constant. Precise positioning is 
vital if the measurement method is to be accurate. The impulse response between the 
source and microphone is measured with the microphone close to the test surface, and 
separately in the free field. These two impulses can be subtracted, which leaves the 
reflected sound and unwanted interfering reflections; these parasitic reflections can be 
removed by time windowing. To allow the subtraction, a deterministic test signal such 
as a maximum length sequence or swept sine must be used.

Placing the microphone very close to the surface ensures that the interfering reflec-
tions are maximally spaced from the wanted reflections, consequently allowing more 
accurate measurements. By de-convolving the loudspeaker’s free field impulse response 
from the in situ measured impulse response, the length of the direct and reflected sound 
in the impulse responses can be shortened. This can help make the gating process more 
accurate. Mommertz advocates doing this de-convolution by pre-emphasizing the test 
signal – an approximate inverse of the loudspeaker impulse response is used to pre-
filter the maximum length sequence before it is sent to the loudspeaker. Alternatively, 
this de-convolution could be done as part of the post-processing before the windows 
are applied. If overlap still exists between the wanted and parasitic reflections, then a 
window with a smooth transition should be used, like a half-Hanning.

If the microphone is very close to the surface, a simple ratio of the reflected and 
incident spectra can be taken to give the complex pressure reflection coefficient, and 
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Figure 3.9 Measurement of in situ absorption properties using time gating.
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from there absorption coefficients and surface impedance. If the microphone is not 
close to the surface, a correction for spherical spreading and propagation phase must 
be made to the incident and reflected spectra before the ratio is taken.

Figure 3.10 shows a typical result. For normal incidence, the reflection coefficients of 
the sample obtained using the in situ method match those obtained using a standing wave 
method in an impedance tube. For oblique incidence and at low frequencies (<800 Hz), 
the method fails with the reflection coefficient exceeding 1. This occurs because there 
is an implicit assumption of plane waves in the methodology. At low frequencies, the 
edges of the test sample create other types of reflected waves, which then render the 
technique inaccurate. One solution to this is to consider spherical wave reflection.32

Problems arise with this in situ method if the acoustic medium changes between the 
free field and sample measurement. For instance, Mommertz gives an example of a 
temperature change of 1°C leading to an error of 0.03 in absorption coefficient.

The final in situ method detailed uses an alternative approach. No attempt is made 
to separate the incident and reflected sound; this removes some of the geometric 
restrictions on the measurement system. To make it work accurately, however, requires 
a good theoretical model of the sound field close to the test surface. The idea of the 
method is as follows: given measurements of the sound field in the vicinity of the test 
surface and a theoretical model for the sound propagation, it is possible to apply a 
numerical optimization or root finding scheme to derive the unknown properties of 
the test sample.

Figure 3.11 shows a typical set-up used by Nocke.33 The transfer function between 
the source and receiver is measured, and from this the angle dependent impedance and 
absorption coefficient is derived by numeric inversion.

To simplify the description, consider a plane homogeneous sample. The pressure 
above the absorber is given by:

 
(3.37)))(),(,,,()()( 0 sisi pRkFpp rrrrrr =

0

0.5

1

1.5

10510.2
f (kHz)

|R|

Figure 3.10 Measurements of reflection coefficient magnitude. In situ method:
  ψ=0°;
  ψ=45°;
  ψ=81°; and
  Standing wave tube method (data from Mommertz29).
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where pi(r) is the pressure direct from the source to the receiver; r is the receiver 
position; ro is the source position; rs is the position of a point on the surface; F() is a 
function which gives the pressure at the microphone due to reflections from the surface; 
k is the wavenumber, and R is the surface reflection coefficient.

There are various prediction theories that can be used to model the function F() 
which gives the reflected energy. For instance, it would be possible to use the theories 
outlined in Chapter 8. Nocke advocates using a spherical wave reflection theory – see 
Chapter 1. It would also be possible (and easier) to use simple plane wave formulations 
provided the surface is large so that edge diffraction is not significant and the source is 
not too close to the surface so the incident wave can be considered to be plane.

Given that the incident and reflected pressures have been measured and that the 
receiver and source positions given in Equation 3.37 are known, the only unknown 
in the equation is the complex reflection coefficient R, as a function of the vector on 
the surface rs. This reflection coefficient can therefore be found by using an iterative 
procedure. For simplicity, assume that R is the same for the whole surface. If the 
measured pressure is pm(r) and the predicted pressure p(r), then a numerical optimizer 
can be tasked with the procedure of minimizing the mean square error between the 
measured and predicted pressures, | pm(r) – p(r)|2 by finding the value of R which gives 
minimal error. There are a variety of numerical optimization methods that can be used 
for this process, such as genetic algorithms.

However, Taherzadeh and Attenborough34 found numerical optimization formulated 
this way was rather slow when calculating the impedance of the ground from excess 
attenuation measurements, because spherical wave reflection coefficients must be 
used for the typical measurement geometries used. They advocated the use of a root-
finding algorithm, which is more efficient because it exploits the Newton Raphson 
algorithm, using calculated derivates. This efficient formulation reduces computation 
time vastly.

Whichever numerical process is used, there is a risk of finding the wrong solution, 
because the measured pressures do not always map to a single unique reflection 
coefficient. A simple solution to this is to make measurements with a couple of different 
geometries to ensure the correct answer is found. In theory, this could work for 
samples where R varies across the surface. As a number of different surface reflection 
coefficients have to be derived, more microphone positions are needed. In this case, 

absorbent 

mic, r source, r0 

point on surface, rs

Figure 3.11 Typical set-up for in situ measurement (after Nocke33).
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the optimization problem becomes slower to solve and the risk of getting incorrect 
solutions from the optimizer increases. The experience with multiple microphone tech-
niques is that the more receiver positions, the more problems with noise sensitivity and 
evanescent waves. Consequently, it might be anticipated that resolving a large number 
of different surface reflection coefficients might prove to be problematical.

Nocke33 restricts himself to deriving an average absorption coefficient for inhomog-
eneous surfaces. Figure 3.12 shows a typical result showing the in situ method compared 
to impedance tube measurements. By using the spherical wave formulation, accurate 
results are achieved down to 80 Hz, but this requires a very large sample of 16 m2 to 
prevent edge effects being significant. The upper frequency limit measured was 4 kHz, 
presumably limited by the accuracy of the microphone positioning. Kruse35 examined 
the method for typical ground surfaces and found the results to be inaccurate below 
about 400 Hz and for hard ground. More measurements utilizing different geometries 
are needed to overcome these problems.
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Figure 3.12 Comparison of in situ and impedance tube measurements for a fibrous 
absorber:
  impedance tube A;

   impedance tube B (on absorption coefficient graph only);
   in situ ψ = 10°; and
   in situ ψ = 12° (data from Nocke 33).
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3.6 Measurement of internal properties of porous absorbents

The remaining sections of the chapter are devoted to the measurement of properties 
within absorbents, characterizing the sound propagation within the porous materials 
either in terms of propagation constants and characteristic impedances or finding key 
parameters, such as flow resistivity, tortuosity, porosity and characteristic lengths. 
These are key measurements for those involved in the development or modelling of 
porous materials.

3.6.1 Flow resistivity

The flow resistivity of a porous absorber is one of the most important defining 
characteristics. Once the flow resistivity is known, simple empirical models can be 
used to find the characteristic impedance and wavenumber, and from there, the sur-
face impedance and absorption coefficient can be obtained. The importance of this 
parameter is discussed in more detail in Chapter 5. For now, three techniques for 
measurement will be considered. These are the preferred techniques, because they are 
non-acoustic and so are the most robust approaches.

The measurement techniques presented here follow directly from the definition of 
flow resistivity. Consider a slice of the porous material of thickness d subject to a mean 
steady flow velocity U. The pressure drop across the sample ΔP is measured, and from 
these quantities the flow resistivity σ is given by:

 (3.38)

The measurement of flow resistivity has been enshrined into International Standards,36 
where more details of the procedure can be found. In the direct flow method, a steady 
air supply pushes air through the porous material. Sensors are used to measure the 
air flow and pressure drop to atmospheric pressure, and hence the flow resistivity is 
obtained. This is shown in Figure 3.13.

Ud
P=

Airflow in from air 
supply (or out to 
vacuum). Flow 
meter(s) here to 
measure flow 

Porous 
material 

Differential 
pressure 
measurement 

P 

Long uniform 
section to set up 
laminar flow 

Open to 
atmosphere 

Open to 
atmosphere 

Figure 3.13 Set-up for direct airflow method for measuring flow resistivity.
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It is important that flow rates are kept small because otherwise the relationship 
between the pressure drop and velocity become non-linear. Flow rates between 5 × 10–4 
and 5 × 10–2 ms–1 are recommended by Bies and Hansen.37 Ingard38 produces results 
that show that the flow rate should not be greater than 0.1 ms–1 to get results consistent 
with the velocity amplitude of typical sound waves in absorbents (0.01 ms–1). (However, 
note that at this flow rate, the flow resistivity varies with flow rate following either a 
linear39 or quadratic relationship.40) The flow resistivity is calculated from:

 (3.39)

where ρ0 is the density of air, A is the cross-sectional area of the specimen and m the 
air mass flow rate (kgs–1).

In the alternative airflow method, a piston is used to generate a low frequency, 
alternating airflow through the test specimen; the piston should move at a frequency 
of f = 2 Hz. The set up is shown in Figure 3.14. The rms (root mean square) airflow 
velocity is then:

 (3.40)

where h is the peak-peak displacement of the piston, Ap the cross-sectional area of the 
piston, and A the cross-sectional area of the porous material. The standard recommends 
0.5 mms–1 <urms <4 mms–1. A condenser microphone is used to measure the rms pressure 
relative to atmospheric pressure.

The problem with these experimental techniques is that there is a great variation 
between results from different laboratories. Garai and Pompoli41 found that repeat-
ability within a laboratory is good, with an error of about 2.5 per cent with repeat 
measurements on one sample and about 5 per cent with five samples cut from the same 
material. Reproducibility between laboratories, on the other hand, is a problem with 
errors around 15 per cent.

There are alternative methods for obtaining the flow resistance. Ingard38 devised a 
measurement system which does not require blowers and flow instrumentation and so 
greatly simplifies the apparatus required. The set up is shown in Figure 3.15. A piston 
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Figure 3.14 Set-up for alternating airflow method for measuring flow resistivity.
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within a tube falls under gravity and pushes air through the porous absorbent. When 
the piston has reached terminal velocity, the pressure drop ΔP across the sample is 
given by:

 (3.41)

where M is the mass of the piston, g is the acceleration due to gravity and Ap the cross-
sectional area of the piston or tube. The flow velocity U is given by:

 
(3.42)

where Ss is the cross-sectional area of the sample, and v is the terminal velocity of the 
piston found by timing how long it takes the piston to travel a set length. Equations 
3.41 and 3.42 can be combined with Equation 3.38 to give the flow resistivity. It is first 
necessary, however, to carry out two calibration measurements. There will be frictional 
forces between the piston and the tube walls, and there will be leakage between the 
piston and the tube wall. Consequently, it is necessary to calibrate for these; in total, 
three timed falls of the piston are made as summarized in Table 3.2.

The time taken for the piston to fall in the tube with no sample over a set length is 
measured in two cases. First with the tube open, t0, and second with one end of the 
tube closed (it does not matter which), t1. Then a calibration factor is found:
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Figure 3.15 Set-up for Ingard’s method for measuring flow resistivity.

Table 3.2 Measurements needed for flow resistivity measurement using falling piston method

Time measured Condition

t Sample in tube, both ends of tube open
t0 No sample in tube, both ends of tube open
t1 No sample in tube, one end of tube closed (either end)
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 (3.43)

where t is the time it takes the piston to drop over the same measurement distance L 
with the sample present. Then the flow resistance is then given by:

 (3.44)

where ψ is the angle of the tube to the vertical.
Ingard38 reports using a tube with an inner diameter of 0.08 m, a length of 1.2 m and 

L = 0.6 m. The piston was 264 g and 10 cm long. The gap between the cylinder and the 
tube wall was about 0.2 mm. The system does not work for materials with very small 
or large flow resistivities due to problems with accurate timing and calibration.

3.6.2 Flow impedance

Strictly speaking, porous materials are not just resistive but contain some reactance 
as well.38 The reactance comes from additional mass due to viscous boundary layer 
effects and constrained flow. Consequently, while Section 3.6.1 has given methods 
for flow resistance, there could be interest in measuring the flow impedance to get 
the reactance. As the resistive term dominates, this type of measurement is not that 
commonly undertaken. While these methods give alternative methods for measuring 
the flow resistivity, they are not the most independent and robust, because they use 
sound waves.

This flow impedance is measured within an impedance tube.42 Figure 3.16 shows an 
arrangement that can be used; the tube is about 5 cm in diameter. A pure tone plane 
wave is produced by the sound source. The frequency is adjusted so that the distance 
w is an odd integer multiple of a quarter of a wavelength:

 
(3.45)
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Figure 3.16 Apparatus for determining flow impedance using an impedance tube (after 
Ingard and Dear 42).
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where n is the number of quarter wavelengths in the length w and n must be odd. 
There are an infinite set of frequencies which satisfy this condition, but a low frequency 
(say less than 100 Hz) is needed to get accurate results, as the sample should be thin 
compared to wavelength. This forces the pressure and surface impedance at the rear of 
the sample to be zero. The flow impedance zf is then a ratio of the pressures measured 
at microphones 1 and 2:

 (3.46)

where p1 and p2 are the complex pressures for microphones 1 and 2. This formulation 
can be derived as follows. As the impedance at the rear of the sample is zero, the flow 
impedance equals the difference in the pressures on either side of the sample divided 
by the particle velocity (which should be the same on both sides of the sample). This 
impedance can be derived, using the transfer matrix method outlined in Section 1.5.1. 
The calculation yields a complex impedance, of which the real part is the flow resistance 
and the imaginary part the flow reactance (the latter is generally small).

Others have also produced variants on this type of measurement.43 Section 3.1.4 
detailed a method for measuring the transmission through a sample using: an impedance 
tube; four microphones, and two different tube terminations (see Figure 3.4). Once the 
transmission matrix coefficients in Equation 3.15 are known, it is possible to calculate 
the pressure difference across the sample by considering the case p(z=-d) = 0 at low 
frequency. Provided the sample is thin compared to wavelength, the flow impedance 
is given by T12.

It is also possible to derive the flow resistivity from the effective density, which can be 
found in impedance tube measurements44 and reasonable accuracy45 (≈20 per cent) can 
be obtained. However, this method is not as independent as the techniques outlined in 
Section 3.6.1, so if possible, methods which do not use sound waves should be used.

3.6.3 Direct measurement of wavenumber

The wavenumber (or propagation constant) for a porous medium can be directly 
measured.46 It is a crucial parameter describing how sound propagates in a medium 
and was defined in Section 1.4.1. The direct measurement process is rather slow, but 
accurate and robust. An impedance tube is filled with the material to be tested. A 
loudspeaker at one end of the tube generates sound waves, which propagate through 
the absorbent. If it is assumed that no reflection happens from the opposite end of the 
tube from the loudspeaker, the steady state pressure in the tube is given by:

 
(3.47)

where z is the distance along the tube, and A is a constant. As the wavenumber k is 
complex, this can be rewritten as:

 
(3.48)

By measuring the decay in the amplitude of the sound wave and plotting the log of 
the amplitude versus distance, the imaginary part of the wavenumber can be obtained. 

2

12/)1(
00 )1(

p
pcjz n

f =

jkzAep =

zkjzk eAep )Re()Im(=



100 Measurement of absorber properties

Measuring the changing phase of the sound wave and plotting another log-linear graph 
yields the real part of the wavenumber.

It is necessary to ensure there are no reflections from the tube end remote from the 
loudspeaker. This necessitates a long length of absorbent to ensure full absorption – it is 
not sufficient just to leave the end of the tube open. Typically 0.5 m of the test absorbent 
might be used, followed by another 0.5 m of loosely packed porous absorber such as 
mineral wool to give an anechoic termination.

The sensing microphone must be placed in the bulk of the absorbent in the tube 
and this can be achieved by using a probe tube microphone similar to that shown in 
Figure 3.1. The probe tube moves within a hole pre-drilled through the centre of the 
absorbent material.

3.6.4 Inverse methods for wavenumber and characteristic 
impedance

Given a theoretical model for the propagation of sound in a porous absorbent and some 
measurements on a simple experimental set up, it is possible to derive the wavenumber 
and the characteristic impedance of porous absorbers.47–49 For example, a numerical 
fit can be carried out between the experimental data and the theoretical model to find 
values for unknown parameters in the theoretical model. Such a technique is similar 
to that used for in situ measurements discussed at the end of Section 3.5 and is also 
used to gain other porous parameters, such as tortuosity as discussed in Section 3.6.8. 
There are various arrangements that can be used for this measurement. The most 
convenient methods are probably those that use the impedance tube, as this is more 
readily available in laboratories. The advantage of these methods over the direct meas-
urement of wavenumber described in Section 3.6.3 is that it is faster and it yields the 
characteristic impedance, as well as the wavenumber.

Smith and Parrott47 review two possible methods, of which the two thicknesses 
method is most convenient and so will be described here. The surface impedance is 
measured for two different thicknesses of the absorbent with a rigid backing. For a 
thickness of d1, the surface impedance is z1:

 
(3.49)

where zc is the characteristic impedance of the sample. A similar relationship gives the 
surface impedance z2 = –jzccot(kd2) for a depth d2. These relationships were derived in 
Section 1.5.1. For simplicity, assume that d2 = 2d1; typically d1 would be a couple of 
centimetres. The equations for z1 and z2 can then be rearranged using trigonometric 
identities and solved to give the characteristic impedance zc and wavenumber k:

 
(3.50)
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It is necessary to choose depths so that z1 ≠ z2 otherwise the results become unreliable. 
This happens when kd1 = kd2 ± nπ, where n is an integer. Unfortunately, there is no way 
to test for this before the measurements, as the wavenumber is unknown. Consequently, 
this must be checked for in analysing the results, and if necessary, another set of 
thicknesses measured.

Another approach is to exploit the transmission measurement approach shown in 
Figure 3.4 and described in Section 3.1.4. The transmission measurement enables the 
transfer matrix that describes how sound propagates through a sample to be determined. 
Combining Equation 3.15 with the general formulation for sound propagation through 
an impedance layer (Equation 1.29) yields:

 
(3.52)

where k is the wavenumber, cρ the impedance and d the depth of the material. The 
material properties can be derived from Equation 3.52:

 (3.53)

 (3.54)

Results from Song and Bolton10 indicate a 5 cm thick sample is reasonable for common 
porous materials.

3.6.5 Measurement of porosity

The porosity of interest here is a ratio of the pore volume involved in sound propagation 
to the total volume; this is the open porosity. For specialist absorbers, such as mineral 
wool, the porosity is close to one, and so the value is often assumed rather than meas-
ured. Table 5.2 gives a table of typical porosities and the surrounding text discusses 
the significance of this parameter in more detail. While it is possible to measure the 
density of the sample and compare this to the density of the matrix material, this will 
not necessarily yield the correct porosity for sound waves, because it will include the 
porosity of closed pores which are relatively inaccessible to sound.

The best (more robust) measurement techniques do not use sound waves and there 
are three methods that satisfy this requirement: one involving liquid saturation; another 
which uses the isothermal compression of air, and a final approach which simply uses 
mass measurements in air and in a vacuum. However, it is best if the experiment uses 
air rather than liquid saturation of the sample, as it cannot be guaranteed that the 
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liquid will fill all the available pores. Liquid saturation is commonly used for geological 
samples,50 but many other porous materials will be damaged by liquids and so this is 
inappropriate. This leaves two approaches which are detailed below.

Figure 3.17 shows a set-up used by Beranek,51 which exploits the isothermal 
compression of the air volume within and external to a porous absorber. This summary 
is partly taken from Cremer and Müller.52 In recent years, improvements of this 
technique have been developed and these are outlined later.

There is a chamber of known volume connected to a U-shaped manometer. The 
material to be tested is placed in the chamber. The valve at the top of the chamber 
can be open or closed. With the valve open, the liquid in both legs will have the same 
height, h. This height is measured. The valve is then closed and the pressure in the 
vessel increased by raising the right leg of the manometer. The surface of the liquids are 
now at h1 and h2 in the two legs and these heights are measured. The difference in the 
liquid levels in the two legs (h2 – h1) is the increase in pressure in the sample in metres 
of water ΔP. This needs to be converted to SI units:

 
(3.55)

where ρw is the density of the liquid in the manometer and g is the acceleration due to 
gravity. The height difference multiplied by the cross-sectional area of the manometer 
tube Ss is the reduction in the volume, ΔV, in the chamber:

 
(3.56)

Assuming this is an isothermal system, the product of the pressure and volume is 
constant (PV = nRT ). This gas law is needed in a differential form for the derivation:

 
(3.57)

By considering the volumes of air being compressed in the chamber, both within and 
external to the test sample, and remembering that the porosity ε gives the ratio of the 
pore to total volume of the sample, Equation 3.57 can be expanded to:
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Figure 3.17 Apparatus for measuring porosity (after Beranek51).
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 (3.58)

where P0 is atmospheric pressure; Va the volume of the material being tested in the 
chamber and V the volume of the chamber. Rearranging then gives the porosity:

 (3.59)

Leclaire et al.53 improved this method by using a reference chamber to reduce the 
influence of temperature and atmospheric pressure changes. Calibration needs only to 
be done once, and so this also reduces the number of operations in the measurement 
process. However, the method is still relatively slow, taking 20 minutes for calibration 
and 15 minutes per sample for the measurement. Porosities are accurate to about 5 
per cent.

Champoux et al.54 produced a more elaborate apparatus, which exploited the same 
physical principle, but without the liquid in the manometer. A micrometer drive produces 
precise small changes in volume, and the pressure differences are measured, using a 
differential pressure transducer. As the formulations assume isothermal conditions, care 
must be taken to insure that temperatures are stable. The paper discusses the various 
precautions needed to ensure the system is isothermal and isolated from atmospheric 
pressure fluctuations, such as the use of a heat sink, thermal insulation material and 
a large air reservoir. Porosities measured over a wide range of materials were accurate 
to better than 1 per cent.

If a measurement apparatus was being made from scratch and the desire was to 
utilize the above methods, the best approach might be to combine the approaches of 
Champoux et al. and Leclaire et al.

Panneton and Gros55 produced a method, which employs a completely different 
approach and uses equipment which is readily available in many laboratories. Two 
masses are required: the mass when the sample is in air Ma, and the sample mass when 
in a vacuum Mv. The porosity is given by:

 (3.60)

where ρ0 is the density of air and V the sample volume. Precise measurement scales are 
needed, because the difference in the two masses on the numerator will be a few tenths 
of a gram typically, however this approach can yield porosities accurately provided the 
sample volume is chosen appropriately so the mass difference is measured accurately.

There are a variety of approaches for getting the porosity using sound waves 
and porous absorber models (particularly the phenomenological model outlined in 
Section 5.4.3). Some of these are given in the next section, which looks at tortuosity 
measurement, because the porosity is found as a bi-product of the process. On the 
whole, these are not the best approaches because they rely on prediction models. They 
are, however, very useful in laboratories which lack the equipment for the measurement 
approaches outlined above.
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3.6.6 Measurement of tortuosity

For a non-conducting porous absorber, which does not get damaged by being soaked, 
the tortuosity can be measured by saturating the material with a conducting fluid and 
measuring the electrical resistivity.56,57 The electrical resistance of the conducting fluid is 
measured alone, rf, and then the electrical resistance of the porous material impregnated 
with the conducting fluid, ra. Then the tortuosity can be found from:

 (3.61)

This is the best approach for getting the tortuosity because it does not involve sound. 
Consequently, it is independent of any prediction models which might use the value 
and therefore more robust.

Using ultrasonic sound waves is another possibility and, as the test frequencies are 
beyond the audible range, this approach has a certain amount of independence from 
any prediction model using the measured values. Starting from the phenomenological 
model shown in Section 5.4.3, and considering sound propagation at high frequency, 
it is possible to show that the tortuosity, ks is given by:58

 (3.62)

where c0 is the speed of sound in air, and c the wave speed in the porous material. 
By measuring the time-of-flight of short ultrasonic impulses, say at 50–100 kHz, the 
tortuosity can be derived. The increase in time of flight is measured when the porous 
material is introduced to estimate the ratio in the above formulation. The sample must 
be thin (typically a few millimetres thick), because there is an assumption of negligible 
absorption and dispersion, and the sample must have relatively small grains, pores or 
fibres (<1 mm). It can be difficult to make such thin samples that are representative 
of large amounts of the material. A powerful source is required, because sound waves 
are easily attenuated at these frequencies. Allard et al.58 found errors of 1–8 per cent 
for the ultrasonic method in comparison to the electrical resistivity measurement in 
plastic foams.

The porosity can also be derived from these ultrasonic measurements, but the errors 
are rather large. More accurate estimations of the porosity can be achieved – while 
simultaneously obtaining the tortuosity – by measuring the reflection of ultrasonic 
waves from materials at two incident angles.59

For porous materials with larger grains, pores or fibres (>1 mm), then the wavelength 
of the ultrasonic waves becomes comparable to these structural elements, and con-
sequently, the assumptions behind the above method breaks down. Umnova et al.60 
used lower frequencies (~3–20 kHz) produced using laser-generated sparks and larger 
samples which were several centimetres thick. Both reflected and transmitted waves 
were measured and used to derive the tortuosity and porosity. Tortuosity is estimated 
from Equation 3.62 and porosity from the high frequency limit of the reflection 
coefficient using:
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(3.63)

Tortuosity errors were small for three of the samples tested (<4 per cent), and for 
porosity the errors ranged from 1–20 per cent.

Tortuosity can also be deduced from the real part of the characteristic impedance 
for mixes where the grain size and pores are large.61 Above some critical frequency, 
the real part of the characteristic impedance Re(zc) approaches asymptotically to a 
limit value:62

 
(3.64)

The next section on characteristic length measurement includes a method using two 
gases that also yields tortuosity.

3.6.7 Measurement of characteristic lengths

There are a few methods available for gaining the viscous (Λ) and thermal (Λ′) char-
acteristic lengths. However, getting accurate results is problematic. Leclaire et al.63 used 
ultrasound frequencies; two gases (air and helium); and a phenomenological model 
similar to that given in Section 5.4.3 to measure the characteristic lengths. Using the 
formulations in that section, it is possible to show that the complex wavenumber in 
the high frequency limit is given by:64

 
(3.65)

where ω is the ultrasonic angular frequency; ks is the tortuosity; ρ0 is the density of air; 
γ is the ratio of the specific heat capacities; P0 is atmospheric pressure; Np is the Prandtl 
number, and δv is the size of the viscous boundary layer.

To get the two characteristic lengths, it is necessary to generate two different 
equations for the wavenumber. This can be done by measuring the system with two 
gases, say air and helium or, for better accuracy, air and argon.65 Argon gives a better 
signal-to-noise ratio than helium for two reasons. First, there is better coupling between 
the ultrasonic transducers and the gas as the characteristic impedance of argon is closer 
to that of air, and second the viscous boundary layer for argon is closer to that of air. 
Measuring with two gases also enables the tortuosity to be found. Time of flight and 
attenuation of ultrasonic pulses are measured and from this the characteristic lengths 
are determined. Defining the accuracy is difficult because no easy reference values are 
available to compare values to, but errors of the order of 10–20 per cent are typical.

Panneton and Olny44 also started with the phenomenological model in Section 5.4.3 
but worked within the audible frequency range. (They also examined the Wilson relax-
ation model of Section 5.4.4.) By rearranging the phenomenological formulation for 
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the real and imaginary parts of the effective density and assuming the porosity and flow 
resistivity are known from other measurements, it is possible to derive expressions for 
the tortuosity and the viscous characteristic length. The effective density is measured 
in the impedance tube. Because the technique works within the audible frequency 
range and relies on the phenomenological model, the method lacks independence 
from prediction models. However, the formulations are such that some checks on 
applicability of the model are possible which enables the reliability of the results to 
be tested. Simulations show that the tortuosity is accurate to within a few per cent, 
but the viscous characteristic length has a bias error of up to 20 per cent. Working 
with equations for the bulk modulus enables the thermal characteristic length to be 
determined in a similar manner.66

3.6.8 Inverse methods for multiple material parameters

A variety of methods for gaining different parameters have been suggested, but no single 
technique discussed previously yields all of them accurately. By measuring both sound 
reflected from and transmitted through porous material at ultrasonic frequencies it is 
possible to gain all the required parameters from a single measurement.67 Although, 
to get both characteristic lengths, it is necessary to assume a given ratio between the 
two, say Λ′/Λ = 2.

A series of measurements of transmitted and reflected pressure are made, and then 
a numerical fit is carried out, using a model which predicts the sound propagation 
in the porous material. The prediction model could be the phenomenological model 
outlined in Section 5.4.3 in the high frequency limit or a relaxation model. The fit is 
carried out directly in the time domain. The values for the internal acoustic properties 
of the material – porosity, tortuosity and characteristic lengths – are changed until the 
least mean square error between the measured and predicted reflected and transmitted 
pressures is minimized across the measurement bandwidth. This fitting process is 
essentially a constrained numerical optimization, for which a number of different 
algorithms can be used.

The quality of the results is dependent on how well the prediction model can predict 
the material behaviour. For instance, if the pores are too big for the prediction model 
used in the measurement bandwidth, then the numerical optimization will yield 
incorrect answers.

A similar procedure can be carried out in the audible frequency range. Again a 
series of reflection and transmission measurements are undertaken, but this time in 
an impedance tube. Then a numerical fit is carried out by changing the values for the 
internal acoustic properties of the material until the mean squared error between the 
measured and predicted surface impedance (and maybe transmission coefficients) are 
minimized across the measurement bandwidth using a constrained numerical opti-
mization. At the end of the fitting process, parameters such as flow resistivity will have 
been deduced.68

Again, this technique relies on the prediction model being able to represent the 
material behaviour correctly. For instance, if a frame resonance is prominent in the 
measurements, this is going to make the results incorrect. There is also a risk that the 
numerical optimization will not find the correct parameter values, either because a local 
minimum is found or because there is not a unique set of solutions for a particular 
measured impedance. This approach is most successful45 in predicting porosity and 
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tortuosity where average errors of 1 per cent and 13 per cent respectively have been 
observed. It is less successful for flow resistivity and the characteristic lengths where 
average errors of 30–50 per cent occur.

3.7 Summary

This chapter has reviewed the methods used to measure and characterize absorbing 
materials. Chapter 5 gives details about how these measured parameters are exploited 
in porous absorber models. The next chapter details the measurement of diffusion.
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4 Measurement and 
characterization of diffuse 
reflections or scattering

While surface scattering elements have been used accidentally or by design in rooms for 
centuries, it is only in recent decades that a concerted effort has been made to develop 
methods for measuring and characterizing the scattering from these surfaces.1 Without 
measurements of surface reflections, it is impossible to confidently design and apply 
diffusers. Consequently, this chapter starts by describing methods for measuring the 
scattering produced by a surface. This mainly concentrates on measurements in terms 
of polar responses, as this is the primary way that surface reflection has been measured 
for diffuser design and evaluation.

The polar response of a source, like a loudspeaker, can be determined by measuring 
the sound energy distribution on a semicircle or hemisphere surrounding the source. 
With care, this concept can be translated from loudspeaker measurements, and used for 
backscattering from architectural surfaces. While polar responses tell designers much 
about how a surface reflects sound, they contain a considerable amount of data and 
a different polar response is required for each frequency band and angle of in cidence. 
This is one of the reasons why single figure parameters have been developed, which 
condense the polar response data and allow characterization in terms of diffusion 
coefficients.

The reflection from a surface can also be characterized using a scattering coefficient, 
which is different from a diffusion coefficient. The differences between the coefficients 
will be discussed in some depth later in this chapter, but for now, it is opportune to give the 
contrasting definitions of diffusion and scattering coefficients:

Diffusion coefficient, (d), is a measure of the uniformity of the reflected sound. 
The purpose of this coefficient is to enable the design of diffusers, and to also 
allow acousticians to compare the performance of surfaces for room design and 
performance specifications.

Scattering coefficient, (s), is a ratio of sound energy scattered in a non-specular 
manner to the total reflected sound energy. The purpose of this coefficient is to 
characterize surface scattering for use in geometrical room modelling programs.

Both the coefficients are simplified representations of the true reflection behaviour. It is 
necessary to come up with simple metrics, rather than trying to evaluate the reflection 
characteristics for all possible source and receiver positions, because the amount of 
data is otherwise too large. The coefficients attempt to represent the reflection by 
a single parameter, maximizing the information carried by that single number. The 
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difference between diffusion and scattering coefficients is the emphasis on which infor-
mation is most important to be preserved in the data reduction. For diffuser designers 
and acoustical consultants, it is the uniformity of all reflected energy which is most 
important; for room acoustic modelling, it is the amount of energy scattered away 
from specular angles. The difference between the definitions may appear subtle, but 
it is significant.

In this chapter, diffusion and scattering coefficients are described after a discussion of 
the direct ways of measuring the energy reflected from surfaces. For example, what are 
the best ways of obtaining the scattered and total sound fields? The chapter concludes 
by describing some other techniques for characterizing surfaces which have yet to find 
great favour, but may in the future be useful techniques.

4.1 Measurement of scattered polar responses

In order to characterize a diffuser’s performance, it is necessary to be able to both meas-
ure and/or predict how the surface reflects sound. Currently, this is most often done by 
looking at how the scattered energy is spatially distributed. This spatial distribution is 
conventionally described by polar responses in one-third octaves, for a given angle of 
incidence. An ideal diffuser produces a polar response that is invariant to the angle of 
incidence, the angle of observation and the frequency (within its operational bandwidth). 
Figure 4.1 shows a measured polar response for normal incidence, at 2 kHz, from an 
array of 2D number theoretic diffusers, one of which is also shown in the figure. There 
are various techniques for measuring such a scattered polar distribution, as discussed 
below. (Chapter 8 details some possible prediction methods.)

Figure 4.1 Three-dimensional polar balloon measured from a Skyline® diffuser, which is 
shown below the polar response.
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A source is used to irradiate the test surface, and measurement microphones at 
radial positions in front of the surface record the pressure impulse response. The 
microphone positions usually map out a semicircle or hemisphere, for a single plane 
or hemispherical measurement, respectively. Once the pressure impulse responses are 
measured, time gating is used to separate the reflections from the incident sound. 
Various methods can be used to measure the impulse responses. The most common uses 
a maximum length sequence (MLS) signal. Other signal possibilities include swept sine 

Figure 4.2 A system for measuring the scattering from a surface in a plane using a 
boundary plane measurement. The diffuser (a Schroeder diffuser) is shown top 
middle. There are 37 microphones arranged on an arc. The source loudspeaker 
is in the bottom middle of the picture (reproduced from the Audio Engineering 
Society Information Document AES-4id-2001, with permission2).

Figure 4.3 A system for measuring the scattering from a surface over a hemisphere. The 
diffuser being tested is the small pyramid in the centre. The source arc is most 
obvious, the receiver arc is acoustically transparent and so is difficult to see 
(reproduced from AES-4id-2001, with permission2).



Measurement and characterization of diffuse reflections or scattering 113

waves and impulses. Time delay spectroscopy might also be used. As time variance and 
non-linearity are not an issue, MLS signals are currently the most efficient to use.

Polar response measurements can be made in a single plane using a 2D goniometer 
on a semicircle,4 as shown in Figure 4.2, or over a hemisphere, using a 3D goniometer, 
as shown in Figure 4.3. The choice of single plane or hemispherical measurement 
depends on the type of diffuser, and the fact that a hemispherical measurement system 
is difficult and expensive to construct. Figure 4.4 (left) illustrates that an extruded 
diffuser (known as a single plane or 1D diffuser) produces scattering in one plane, 
and consequently a single plane evaluation is appropriate.3 If the surface produces 
scattering in multiple planes, as shown in Figure 4.4 (right), then a hemispherical 
evaluation is ideal. However, for practical reasons, carrying out a couple of single plane 
measurements in orthogonal directions might be done. Figures 4.2 and 4.3 show 1:5 
scale measurement systems. Scale model measurements are needed, because otherwise 
the source and receiver radii become too large (see below).

In Figure 4.2, a fixed microphone array is used. In Figure 4.3, a single microphone 
is moved on a lightweight scaffolding, which then traces out a hemisphere. It is also 
possible to use a boom arm to rotate a microphone on a single arc, as shown in Figure 4.5.

The single plane measurement can be made in an anechoic chamber,5 but it is also 
possible to use a boundary layer technique;4 this latter technique is shown in Figure 4.2. 
This can be done in a large room, provided that the ceiling and walls are sufficiently 
far away from the test set up. The scattering sample is shown in the top middle, along 
with 37 pressure zone microphones arranged on a semicircle 1 m from the sample. 
The source loudspeaker, for normal incidence, is shown at the bottom middle located 
2 m from the sample. Ideally, somewhat larger source and receiver distances should 
be used to allow wider samples to be measured. The measurement geometry is shown 
in plan view in Figure 4.6, and from this geometry it is possible to calculate the size 
of the non-anechoic room needed for the measurement. In this case, the loudspeaker 
(L), microphone (M) and diffuser (D) are placed on a flat, hard surface on the floor. 
The microphone radius is denoted by R and the loudspeaker radius is 2R. Figure 4.6 

Figure 4.4 Scattering from a single plane (left) and hemispherical diffuser (right) (after 
D’Antonio and Cox3).
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illustrates the ellipsoidal area (dashed) necessary to make a reflection free zone 
measurement. Consider the respective sound paths of the direct sound (LM = R), the 
scattered sound (LDM = 3R) and the limiting reflection from the second order reflection 
from the speaker (LDLM = 5R). Therefore, the reflection free zone, which measures 
only scattering from the sample, is 4R. It is possible to determine the ellipsoidal area 
from the measurement geometry. If the limiting path is 5R, then the total path travelled 
from the loudspeaker to the room boundary, B, and back to the microphone is also 
equal to 5R = LBM (LB + BM). The minor axis of the ellipsoid, H, equals 2.45R and 
the major axis, W, equals 2.5R. If R=5 m, then this requires a room 12.2 m high, by 
24.4 m wide, by 25 m long. Since this is an unreasonably large room, measurements 
have been done at 1:5 scale in which R = 1 m.
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Figure 4.5 A schematic of a measurement system.
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Figure 4.6 Plan view of reflection free zone geometry for boundary measurement technique. 
Loudspeaker (L), microphone (M), diffuser (D), microphone radius (R), room 
boundary (B), ellipse axes (H) and (W).
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In the boundary layer measurement, the floor acts as a mirror image and what 
is measured is effectively the diffuser paired with a mirror image of the diffuser, as 
illustrated in Figure 4.7, where a section is shown. In Figure 4.7 (left) a diffuser is 
shown in a real test condition and its image source equivalent. The diffuser is extruded 
in the vertical direction, and so it can be seen that what is actually measured is a sample 
twice as high, with the source and receiver at the midpoint. In Figure 4.7 (right) a 
non-extruded shape (arc) is shown in the real test configuration and its image source 
equivalent. For this sample, the actual sample and its mirror image is being measured.

As the source and receivers are not located exactly on the boundary, there is an 
upper frequency limit for this measurement. The longest and shortest propagation 
paths must not differ by more than half a wavelength. In terms of the geometry shown 
in Figure 4.7, the path difference |r1 – r2 – r3| <<λ/2, where r1, r2 and r3 are defined in 
the figure.

A potential problem with this measurement process is that the microphone(s) will 
get in the way of the sound propagating from the source to the panel. For this reason, 
the fixed microphone array or the boom arm used to move a single microphone must 
be small enough not to cause significant reflections or disturbance to the sound field. 
Where possible, supports should be located not in a direct line between source and 
diffuser, and be covered in absorbent material or be acoustically transparent. Fixed 
microphone arrays have been constructed using small pressure zone microphones. 
This potential interference by the microphones on the sound field makes diffuser 
measurements more awkward than measuring the polar responses from loudspeakers, 
because for loudspeakers it is possible just to rotate the loudspeaker.

Figure 4.7 Top row: boundary plane measurement and below that the equivalent image 
source configuration. Left column: extruded sample; right column: non-
extruded surface. The insert shows distances used for calculating the maximum 
frequency.
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The single plane measurement is quick and easy to carry out. In contrast, measure-
ments with a hemispherical goniometer require considerably more complex engineering 
to achieve the acoustically transparent microphone positioning in an anechoic chamber. 
Hemispherical measurements are also more time-consuming, due to the great increase 
in the number of measurements required. A spatial resolution of 5° in azimuth and 
elevation requires 1,296 measurement positions for every angle of incidence. (5° was 
chosen because tests have shown that this is a sufficient resolution to gain the polar 
response accurately without overburdening measurements with excessive sampling 
points.) Consequently, for hemispherical evaluation, it is much easier to use validated 
prediction models. For this reason, a better approach is to follow the suggestion of 
Farina6 to measure two semicircular arcs rather than measuring the whole hemisphere. 
Incidentally, if symmetry in the sample exists, and the source lies in the plane of 
symmetry, it is possible to reduce the number of measurements. For the hemispherical 
measurement, symmetry is worth exploiting.

Figure 4.8 illustrates the sequence of events in determining the scattered impulse 

Figure 4.8 Data reduction process to extract the scattered impulse response from a test 
sample at a given observation angle.
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response at a particular observation angle, for a given angle of incidence. As an 
illustration, consider the measurement in a single plane illustrated in Figure 4.2. To 
obtain the impulse response of a sample under test, it is necessary to de-convolve the 
loudspeaker/microphone response at each scattering angle, h3(t). It is also necessary to 
minimize any room interference and reflections from microphone supports and wires 
within the time window of interest. To obtain the ‘Loudspeaker mic response’ (top 
panel in the figure) at each scattering angle, the loudspeaker is placed at the sample 
position and rotated so its on-axis response is coincident with the on-axis response of 
each microphone for each angle.

The loudspeaker is then placed in its normal source position, without any sample 
present, and the ‘Background response without sample’, h2(t), at each angle is auto-
matically measured via computer control by emitting 37 impulses and sequentially 
switching each microphone on. A vertical dotted line representing the time window of 
10 ms used to isolate the reflections is also shown. The sample under test is then placed 
in position and the scattered sound is measured, obtaining the ‘Background response 
with sample’, h1(t), in Figure 4.8.

Data are collected at 5° intervals. The measurement system selects a microphone, 
emits a selected maximum length sequence stimulus, records the data, selects the 
next microphone position, and so on. Since the microphones are stationary and the 
measurement process is rapid, the respective background response can be subtracted 
from each microphone position, prior to de-convolution. This is illustrated as ‘Sample 
minus background’ in Figure 4.8. The direct sound is significantly decreased and is 
not providing interference in the time window with the scattered sound. The room 
interference is also decreased. The loudspeaker/microphone response can now be de-
convolved as illustrated in ‘Deconvolved sample response’, h4(t), which is calculated 
using:

 (4.1)

where FT and IFT are the forward and inverse Fourier transforms. The data within the 
time window is gated to isolate the ‘Windowed sample response’.

This process assumes that the system remains time variant over the time it takes to 
determine all 2 x 37 impulse responses for the with and without sample measurements. 
For full-scale measurements, this can be problematic. One way of mitigating this 
difficulty is to measure the with and without sample responses for each microphone 
immediately after each other. Many modern measurement systems are capable of 
making multi-microphone measurements simultaneously. Therefore, 37 impulse 
responses can be measured with one stimulus with and without sample present, to 
significantly improve the accuracy of the background subtraction.

The data are further post processed to provide frequency responses, polar responses and 
finally diffusion coefficients, as shown in Figure 4.9.

At the top, Figure 4.9A shows the 2D boundary measurement geometry with the 
exciting loudspeaker at an angle of incidence of –60° with respect to the normal. Also 
shown are the 37 receiving microphones. A flat non-absorbing sample is being measured. 
Below that, Figure 4.9B shows the impulse response for the microphone at 0°, with the 
scattered data outlined in a box, corresponding to the time window in Figure 4.8. The 

[ ]
[ ]=

)(
)()()(

3

21
4 thFT

ththFTIFTth



118 Measurement and characterization of diffuse reflections or scattering

scattered data are windowed for all of the angles of observation, of which five are 
highlighted at –60, –30, 0, 30 and 60° and concatenated in Figure 4.9C in the form of 
a temporal angular impulse response. A Fourier transform is then applied to each of 
the impulse responses to get the frequency responses, shown in Figure 4.9D. Five of 
the 37 frequency responses are only shown for clarity. The frequency response energy 
is summed over one-third octave bands and three of the polar responses are shown in 
Figure 4.9D. The visible polar response at high frequency is narrow and directed in 
the specular direction of +60°, as would be expected. The polar responses can then be 

Figure 4.9 Summary of data processing technique from a flat reflector at –60° incidence.
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further processed to give a diffusion coefficient, which is plotted versus frequency to 
obtain the diffusion response in Figure 4.9E. Without normalization, the diffusion 
coefficient decreases as the frequency increases. This happens because the width of 
the panel becomes increasingly large compared to the wavelength and the scattering 
becomes more specular. To remove these finite-panel effects, a normalized diffusion 
coefficient is used and because a flat reflector is being measured, this is zero for all 
frequencies in this case.

D
iff

us
io

n

Frequency

A

B

C

D

E Without normalization

Normalized

Figure 4.10 Summary of data processing technique from a diffuser at –60° incidence 
(reproduced from AES-4id-2001, with permission2).
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In Figure 4.10, the same procedure is shown for a diffusing sample for –60° incidence. 
The polar responses are more semicircular and the diffusion coefficient without nor-
malization is closer to 0.6, the maximum value for complete diffuse reflection on real 
surfaces. By normalizing the diffusion coefficient with the flat reflector value, the 
frequency at which surface scattering becomes important is clearer and the results are 
easier to interpret. Normalization also removes edge diffraction scattering effects, so 
that the normalized diffusion coefficient represents the uniformity of scattering from 
the surface topology only.

In Figure 4.11, a presentation format for a sample of three semicylinders is shown. The 
top row shows a photo of the three semicylinders on the left, the diffusion coefficient of 
the test sample compared to a reference flat reflector in the middle and the normalized 
diffusion coefficient on the right. The remaining images are the one-third octave polar 
responses of the test sample compared with a reference flat reflector. Round robin 
testing on a reference sample has been shown to be effective in comparing the results 
from different laboratories. Three semicylinders, which can easily be fabricated from 
PVC pipe as a test sample, can be used to calibrate different goniometers.
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line, reference reflector dark line.
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Figure 4.12 compares the measured and predicted scattering from a surface meas-
ured both on a single plane and a hemisphere. The agreement between theory and 
measurement is good; this is a measurement process that yields accurate results.

4.1.1 Near and far fields

All free field measurements suffer from the problem that the relative levels within the 
polar response are dependent on distances from the source and receiver to the surface, 
unless the source and receivers are in the far field. (The far field being where the 
scattered pressure falls by 6 dB per distance doubling for 3D geometries, and 3 dB per 

Figure 4.12 Comparison of measured and predicted polar responses for a square-based 
pyramid and normal incidence.

 Top:  measurement (2D) using boundary plane; 
and  single plane BEM prediction (1 kHz).

 Middle: 3D measurements at the University of Salford (2 kHz).
 Bottom: 3D BEM prediction (2 kHz) (after Hargreaves et al.7).
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distance doubling in 2D geometries.) Unfortunately, in most room applications, it is 
usual for sources and receivers to be in the near rather than the far field, unless the test 
surface is small. Figure 4.13 shows the scattering from a plane surface for a variety 
of receiver distances. As the receiver approaches the surface, the scattered pressure is 
more evenly distributed over the polar response. A plane surface appears to be a very 
good diffuser when measurements are made close to the surface. In fact, close enough 
to the surface the reflection is provided by an approximate image source that radiates 
the same energy to all receivers except for minor effects due to spherical spreading 
and path length differences. This seemingly contradicts conventional wisdom in room 
design that a plane surface is a poor diffuser.

To understand this contradiction, it is necessary to understand why plane surfaces 
can cause problems in real applications. Problems can occur with plane surfaces with 
directional sources such as trumpets. The reflected energy will be concentrated over a 
narrow solid angle, leading to a risk of detrimental effects such as echoes, coloration or 
image shift for receivers within this solid angle. The results shown in Figure 4.13 were 
produced using an omnidirectional source. Furthermore, the plane surface does not 
produce any temporal diffusion, and as discussed in Chapter 10, this is another important 
reason why it is a poor diffuser. The polar responses do not consider the wavefront phase.

The solution usually adopted is for scattering measurements based on polar dis-
tributions to be taken in the far field, even when this is further than any real listeners 
would ever be. Then some receivers will be outside the specular zone (which is defined 
in Figure 4.14), and it is possible to measure the energy dispersed from receivers in the 
specular zone to those outside the zone. In the spatial domain and in the far field, the 
effect of a diffuser should be to move energy from the specular zone to other positions. 
So, unless receivers are placed both outside and within the specular zone, measuring 
energy levels alone will not detect the effects of diffuse reflections.

There are standard formulations for approximately calculating the required distance 
for measurements to be in the far field.8 These criteria apply to both sources and 
receivers, but for now, only receivers are considered to simplify explanations – the 
source will be assumed to be at infinity. There are two criteria to satisfy: the receiver 
radius should be large compared to wavelength and the differences between path lengths 

Figure 4.13 Effect of receiver arc radius on the polar response of a 1 m square plane 
panel. Single plane BEM prediction, 5 kHz, normal incidence, source

 distance = 100 m. Receiver distances  0.1 m,  0.5 m,  1 m,
  2 m,  5 m,  100 m (after Hargreaves et al.7).
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from points on the surface to the receiver should be small compared to wavelength. 
With the geometries and frequencies used for measuring diffuser scattering, it is the 
latter criterion that is most exacting.

Unfortunately, the common far field formulations are not applicable to the case of 
oblique receivers, where significant destructive interference occurs. Problems arise 
because the amount of destructive interference is very sensitive to the relative magnitudes 
of the waves coming from the secondary sources on the scattering surface (assuming 
the scattering is modelled following Huygen’s principle). Consequently, the receiver 
distance required to achieve the true far field for oblique receivers is often so large that 
measurements cannot be accommodated in normal test facilities. Figure 4.15 shows 
the scattering from a surface as a function of distance; it takes a receiver distance of 
hundreds or even thousands of metres to reach a completely stable far field polar 
response!

Fortunately, a pragmatic approach may be taken, as knowing the minima in a polar 
response to very exact detail is not necessary. This is particularly true if a diffusion 
co efficient is going to be evaluated, as the calculation of the coefficient involves 
reducing the many scattered pressure values in a polar response to a single figure of 
merit. Consequently, errors from the slight misrepresentation of notches in the polar 
response will have negligible effect on the diffusion coefficient value. The situation is 
also less critical when one-third octave bandwidths are used, as is normal practice. So, 
the true far field does not have to be obtained. It is sufficient to ensure that the majority 
of receivers are outside the specular zone, so that the diffuser’s ability to move energy 
out of the specular zone can be measured. Then a reasonable approximation to the far 
field polar response can be obtained.

The Audio Engineering Society standard information document, AES-4id-2001,2 
recommends that 80 per cent of receivers are outside the specular zone, ideally in 
revisions of the standard this figure should be referenced to Fresnel zones or panel 

Figure 4.14 Definition of the specular zone – the region over which a geometric reflection 
occurs. (Although the specular zone is strictly a high frequency construction, 
practice has shown it to be a useful concept for the geometries and frequencies 
typically used in diffuser design) (after Hargreaves et al.7).
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critical frequencies.9 In Figure 4.16 the diffusion coefficients (the single figure of merit 
derived from the polar responses) for two surfaces, as a function of receiver distance, 
are shown. The point where 80 per cent of the receivers are outside the specular zone 
is shown. The plane panel case shown is one of the worst case scenarios and the error 
introduced into the diffusion coefficient is only 0.1. Furthermore, this is a single 
frequency prediction. Once summing across one-third octave bands is used, this error 

Figure 4.16 Effect of receiver arc radius on the diffusion coefficient. Single plane BEM 
predictions, normal incidence, source distance = 100 m.

  1 m wide plane panel, 5 kHz;
  1 m wide random binary panel, 400 Hz (after Hargreaves et al.7).

Figure 4.15 Variation of the scattered polar response with receiver distance to illustrate 
extent of near field. Receiver angle on a linear scale for clarity; insert graph 
is an enlargement of a section of the main graph. 1 m plane surface at 1 kHz 
using BEM predictions. A distance correction of 1/√r has been used to correct 
for cylindrical wave spreading. Receiver distances:

  2.94;
  12;
  32; and
  100 m;
 (after Hargreaves et al.7).
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approximately halves. Consequently, a reasonable approximation to the true far field 
polar responses and diffusion coefficients can be obtained.

An alternative solution is to use near field acoustic holography10 to enable near field 
measurements to be projected into the far field, but this method has disadvantages, such 
as the problems of mounting the surface in a manner similar to typical applications. 
Another solution is to use validated numerical models, as predicting in the far field is 
always possible.

For some surfaces, however, it is not sufficient just to measure in the far field. For 
concave surfaces and others that might have significant aberrations closer to the 
surface, it is necessary to monitor in the near, as well as the far field to ensure that effects 
such as focussing are found. This is illustrated in Figure 4.17 where the scattering from 
a concave surface is shown as a function of distance. It can be seen that receivers very 
close to the surface detect a good diffuser, but a little further out the reflected sound 
is highly focussed. In the far field, some diffusion is created. In summary, a pragmatic 
approach requires receivers to be both inside and outside the specular zone and 
measurements at application realistic distances are also needed to check for focussing 
with concave surfaces.

4.1.2 Sample considerations

It is important to test a sample which is representative of the entire structure to be 
applied in real applications. For instance, one period of a Schroeder diffuser should 
not be tested alone if the intention is to apply the surface periodically; this is because 
the scattering from the periodic and single diffuser will be very different. Where 
the whole sample cannot be tested, because of geometric constraints on source and 
receiver distances, the following techniques are suggested in AES-4id-2001:2 for a 
periodic sample at least four complete repeat sequences should be included so the 
effects of lobing from repetition is measured. (Although the width of the diffraction 
lobes depends somewhat on the number of repeat units in the sample.11) Figure 4.18 

Figure 4.17 Effect of receiver arc radius on the polar response of a concave arc. Single 
plane BEM predictions, 2 kHz, normal incidence, source distance = 10 m:

  near field;  focal distance;  far field (after Hargreaves
et al.7).
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shows the normalized diffusion coefficient from five different sets of semicylinders. 
The plots show that one cylinder is not representative of the scattering from an array 
of semicylinders. For random surfaces, representative samples of the surface roughness 
should be tested, large enough so that surface, rather than edge, effects are more 
prominent in the scattering.

Some have said that the diffusion coefficient method will not work for large surfaces 
with small surface roughness and that it is intended to be used for single diffusers only. 
This is not true, and the evaluation method can theoretically be used on any sized 
surface. The problem is that, when the surface becomes large, the measurement becomes 
impractical because it is impossible to get far enough away from the surface. In this case, 
the evaluation can still be done, but only with the use of prediction or scale models.

When scale models are used, it is important that a representative test sample is 
constructed. For scale models, the absorption properties should be the same for both 
the full scale surface at full scale frequencies and the test surface at the equivalent model 
scale frequency. When considering absorption from samples, losses due to viscous 
boundary layer effects should be included. This consideration can limit the usable 
model scales, because viscous boundary layer effects do not scale in the same way as 
physical dimensions.

Tremendous advances have been made in 3D solid prototyping printers and scale 
samples can easily be fabricated with solid reflective backs for diffusive/reflective 
comparison tests in the goniometer. A photo of samples made using this rapid proto-
typing system is shown in Figure 4.19. The software layers a 3D CAD file into thin 
layers. The printer lays down a thin layer of powder and a print head with resin rasterizes 
this layer and successive layers, depositing resin wherever there is a contribution from 
the sample in the layer. At the end, a 3D physical scale model is created.
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Figure 4.18 The normalized diffusion coefficient for various sets of semicylinders. The 
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4.2 Diffusion and scattering coefficients – a general discussion

While polar responses can give much information about the sound reflecting from a 
surface, the problem is that they can yield too much detail. There is a need to reduce 
the large amount of data in a polar response to a single value, to allow a more ready 
comparison of diffuser quality. This then helps diffuser designers to evaluate the 
worth of a product and room designers to produce product specifications for surface 
designs. However, it is important that the polar responses are not disregarded; they 
should also be available for designers to consider alongside the diffusion coefficient. 
In addition, there is a need for a scattering coefficient to evaluate the amount of 
dispersion generated by a surface and so allow accurate predictions using geometric 
room acoustic models.

Unfortunately, there does not appear to be one ideal coefficient which meets the 
needs of all interest groups – the room modellers, diffuser manufacturers and room 
designers. There are no diffusion or scattering coefficients currently in the literature 
that do not have flaws in their use. While on first examination it appears possible to 
produce a watertight definition of a coefficient, detailed analysis reveals problems. For 
this reason, two different coefficient definitions are, or are about to be, enshrined in 
international standards. While this may appear unsatisfactory, it should be remembered 
that room acoustics has for a century used an absorption coefficient which has well 
defined limitations in application. For example, there are two primary techniques for 
measuring absorption – the impedance tube and reverberation chamber methods – and 
each measurement method has advantages and disadvantages and is used for different 
reasons. In an analogous manner, the methods for characterizing diffusion can be 
classified either as free or diffuse field.

Diffuse field methods have the advantage of quickly obtaining a random incidence 
coefficient, but are difficult to predict. A measurement method for obtaining a random 

Figure 4.19 Samples generated using a 3D printer.
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incidence scattering coefficient is now part of an ISO standard;12 this is based on the 
Mommertz and Vorländer technique.13,24 Free field methods are often more laborious 
measurements to carry out, but can be readily predicted. A free field method for a 
diffusion coefficient, based on the Cox and D’Antonio technique, has recently been 
published in AES-4id-20012 and is likely to become part 2 of the ISO standard.

The terms scattering and diffusion are used in different ways and are interchanged 
in different subject fields. It would be possible to have a long argument about whether 
diffusion or scattering is a better terminology for a given coefficient, but it would be 
impossible to get a unanimous agreement on nomenclature. Consequently, in this book 
the nomenclature that is being used in the standards will be adopted. This defines the 
diffusion and scattering coefficients as follows:

• A diffusion coefficient measures the quality of reflections produced by a surface, in 
the case of the AES coefficient, by measuring the similarity between the scattered 
polar response and a uniform distribution.

• A scattering coefficient is a measure of the amount of sound scattered away 
from a particular direction or distribution. This has the greatest similarity to the 
coefficients required as inputs to current geometric room acoustic models.

4.3 The need for coefficients

4.3.1 Diffuser manufacturer and application

When Schroeder introduced his revolutionary design of diffusers, which are described 
in Chapter 9, he also introduced a possible measure for complete diffuse scattering. 
This was different from Lambert’s law. Schroeder defined optimum diffuse scattering 
as being when the level of the grating lobes produced by a periodic phase gratings have 
the same energy. Since the 1970s, many other types of diffusers have been produced, 
and to enable the merits of these designs to be evaluated, it is necessary to have a 
better measure of the quality of the diffuse reflections than lobe energy. The idea of 
measuring the similarity of the lobe energy is not a useful criterion, because surfaces 
do not have to be periodic and non-periodic surfaces do not necessarily have grating 
lobes. Consequently, new definitions to measure the diffuseness of reflections have 
been developed.

For a diffusion coefficient to be useful to designers, the primary characteristic of 
the coefficient is that it must rank diffusers correctly according to quality. This will 
not necessarily be achieved by the scattering coefficient, and this is why a separate 
coefficient has been developed for quality. An ideal diffusion coefficient would:7

• have a solid physical basis;
• be clear in definition and concept, and related to the current and future roles of 

diffuse reflections in airborne acoustics, especially in rooms;
• consistently evaluate and rank the performance of diffusers;
• apply to all the different surfaces and geometries found in rooms;
• be measurable by a simple process;
• be bounded;
• be easy to predict.
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This turns out to be like searching for the Holy Grail, but it is possible to produce a 
diffusion coefficient that does satisfy most of the above criteria.

The current state-of-the-art in diffuser design is numerical optimization, as described 
in Chapters 9 and 10. Using diffusion coefficients in a numerical optimization has 
enabled designs to move away from the rigid geometric constructs imposed by phase 
grating diffusers. This has enabled designs in which both acoustic and visual require-
ments can be considered and their conflicting requirements resolved. It is now possible 
to make diffusers which blend in with architectural forms rather than appearing as 
add-ons and this is important for acoustic treatments to be acceptable to architects. 
Enabling shape optimization has been one of the main drivers behind the development 
of a diffusion coefficient.

When a designer requires absorbing surfaces in a space, a performance specification 
in terms of the absorption coefficient is currently used to ensure quality and compliance 
with design requirements. One of the aims of research into diffusion coefficients was to 
be able to state the amount of diffuse reflections required in performance specifications; 
this can now be done by specifying diffusion coefficients measured or predicted 
according to AES-4id-2001. Without standardization, the industry is vulnerable to 
published performance data which have no basis in fact and diffusers that do not 
perform as intended.

The evaluation criteria developed do not just have to be applied to especially designed 
surfaces; they can also be used to monitor the diffuse reflections by accidental diffusers. 
It appears that surface diffusion is often applied in a haphazard fashion, because 
there is not a good understanding of when and where to apply diffusers. For instance, 
discussions with consultants produce examples where it is claimed that too much or 
too little surface diffusion has resulted in acoustic aberrations. A priori to developing a 
better understanding of where diffusers are needed is an index to measure their quality. 
This measure is now provided by the uniformity diffusion coefficient.

4.3.2 Geometric room acoustic models

Originally, geometric room acoustic models did not include the effects of scattering 
due to edge effects and surface roughness. However, there is now plenty of evidence 
that incorporating scattering into the geometric models enhances prediction accuracy. 
For instance, it has been shown that without surface scattering, geometric room 
acoustic models tend to over predict reverberation time.15–17 This is especially true in 
spaces where absorption is unevenly distributed, as happens in many concert halls, or 
where rooms are highly disproportionate, as happens in many factories. Moreover, 
for acoustic parameters that are highly dependent on early reflection prediction 
accuracy, such as early lateral energy fraction and clarity, there can be great sensitivity 
to the modelling technique used for diffuse reflections and to the value of scattering 
coefficients assumed.18 In the first round robin study of room acoustic models,17 three 
models were found to perform significantly better than others. These three models 
produced results approximately within one subjective difference limen, while the less 
successful models produced predictions inaccurate by many difference limen. What 
differentiated the three best models from the others was the inclusion of a method to 
model surface scattering. Scattering in geometric room acoustic models is discussed in 
detail in Chapter 12.

There are many different methods for incorporating diffuse reflections into a geometric 
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room acoustic model19 (see Chapter 12). This process is inevitably approximate, be-
cause geometric models cannot explicitly model the true wave nature of sound. The 
geometric models use a scattering coefficient to determine the proportion of the energy 
that is reflected in a specular manner and the proportion that is scattered. (In the 
computer models, these coefficients are sometimes referred to as diffusion coefficients 
just to confuse matters!) Problems arise, because until recently, there has not been a 
procedure for determining the values of the scattering coefficients, except for trial 
and error and through precedence. Consequently, a key driving force behind the ISO 
process was to standardize a method to enable scattering coefficients to be determined 
in a rigorous manner.

The scattered energy in a geometric model is usually distributed according to 
Lambert’s cosine law.20 Lambert’s law is used because it fits with the philosophy of 
the geometric models which are based on high frequency modelling techniques. The 
law is correct for high frequency, point incoherent scattering. As shall be discussed 
below, diffusion coefficients used by diffuser designers are based on uniform energy 
distribution. Uniform energy distribution is a possible design goal, because the reflected 
sound from surfaces display strong coherent interference effects at the most important 
acoustic frequencies. Indeed, this coherence is explicitly exploited in many diffuser 
designs – just try and explain how a Schroeder diffuser works without referring to 
interference! Consequently, Lambert’s law is inapplicable for evaluating diffusers, and 
despite what some have claimed, diffuser designers are not violating the second law of 
thermodynamics. Conversely, using the diffusion coefficients measured according to 
AES-4id-2001 in geometric room acoustic models is likely to produce incorrect results, 
unless the model has been explicitly designed to use this coefficient.

4.4 The diffusion coefficient

4.4.1 Principle

The general method for evaluating diffuser quality is as follows. First, the scattering 
from a surface is measured or predicted in terms of a polar distribution, as discussed 
in Section 4.1. Then the diffusion coefficient is a frequency dependent, single figure 
of merit derived from the polar distribution. This is evaluated in one-third octave 
bandwidths, which has the advantage of smoothing out some of the local variations in 
the polar responses, so the diffusion coefficient is based more on the overall envelope. 
There have been various statistical operations suggested to calculate a diffusion 
coefficient from the polar distributions: standard deviation,21–23 directivity,24,25 specular 
zone levels26,27 and spherical harmonics,28 percentiles and autocorrelation.7 In any such 
data reduction, there is a risk of losing essential detail. It has been shown that the 
autocorrelation coefficient seems to offer significant advantages over other published 
statistical techniques.

The autocorrelation function is commonly used to measure the similarity between 
a signal and a delayed version of itself; looking for self similarity in time. It is also 
possible to use the autocorrelation to measure the scattered energy’s spatial similarity, 
with receiver angle. A surface which scatters sound uniformly to all receivers will 
produce high values in the spatial autocorrelation function; conversely, surfaces which 
concentrate reflected energy in one direction will give low values. To form a single 
figure diffusion coefficient, the circular autocorrelation function is first calculated and 
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then an average taken. This is a rather laborious process, but fortunately the whole 
calculation can be simplified to a single equation. For a fixed source position, the 
autocorrelation diffusion coefficient, dψ, can be calculated using:

 

(4.2)

where Li are a set of sound pressure levels in decibels in a polar response, n is the 
number of receivers and ψ is the angle of incidence. This equation is only valid when 
each receiver position samples the same measurement area. This is automatically 
achieved for single plane measurements on a semicircle with an even angular spacing 
between receivers. (The fact that receiver positions at ±90° actually sample half the 
area of the other receivers can be ignored, because applying a correction makes an 
insignificant difference to the diffusion coefficient.)

Figure 4.20a shows the diffusion coefficient for a few commercial products and a 
reference flat surface. At low frequency, edge scattering causes the diffusion coefficient 
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to increase with decreasing frequency because the sample acts as a point source 
scattering omnidirectionally. While there is a clear physical explanation for this effect, 
it does lead to confusion and so a normalized diffusion coefficient is introduced to re-
move this effect. The result of normalization is shown in Figure 4.20b. This gives the 
more intuitive response, with surfaces producing little diffusion at low frequency. It also 
more clearly illustrates the frequency where diffusion begins. The normalized diffusion 
coefficient, dψ,n, is calculated using the following formulation:

 (4.3)

where dψ and dψ,r are the diffusion coefficients calculated using Equation 4.2 for the 
test sample and a reference flat surface of the same overall size as the test sample. At 
low frequency, sometimes the normalized diffusion coefficient dips below zero, due to 
experimental ‘error’. In these cases, the negative values should be set to zero.

The concern with diffusion measurement is to determine the ability of diffusers to 
uniformly scatter in all directions, rather than with just the ability of a surface to move 
energy away from the specular angles. This restriction is placed because of experiences 
of diffuser designers. From the standpoint of a designer, it is important that a diffusion 
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 Bottom: the diffusion and scattering coefficient frequency responses:
  correlation scattering coefficient; and
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coefficient differentiates between redirection and dispersion. Figure 4.21 shows the 
scattering from a flat surface, and the same flat surface which has been rotated by 
20° to redirect the specular reflection in another direction. The normalized diffusion 
coefficient measures the rotated plane surface to have little dispersion capabilities, 
as would be anticipated. The scattering coefficient, however, sees the redirection of 
energy from the specular reflection angles as scattering, and therefore gives a high 
coefficient for the rotated plane surface, even though this is only achieving redirection, 
not dispersion. Diffusers are often applied to treat first order reflections, for example 
to prevent echoes from the rear wall of concert halls. If all the diffuser achieves is 
redirection, there is a risk that the echo problem will simply move to another place 
in the hall. On the other hand, if the diffuser achieves spatial dispersion, this has the 
potential to reduce the echo problem, without creating new difficulties elsewhere. This 
is the reason why the Mommertz and Vorländer13,14 free field method has not found 
favour with diffuser designers.

4.4.2 Obtaining polar responses

Section 4.1 already discussed how measurements might be made to obtain the polar 
responses. Predictions can also be used. AES-4id-20012 recommends a receiver 
every 5°, with the source at 10 m and receiver arc radii 5 m (equivalent full scale). It 
recommends that to obtain a random incidence diffusion coefficient, source positions 
should be measured with a maximum angular separation of 10°, covering a semicircle 
or hemisphere measured about the reference normal. Random incidence is achievable 
for single plane measurements, but the number of measurements in the hemispherical 
case is unrealistically large (0.5 million source and receiver combinations). To overcome 
this, the pending ISO standard suggests measuring the directional diffusion coefficient 
at 0, ±30 and ±60°. The average incidence coefficient can be obtained from the average 
of the five normalized directional diffusion coefficients. In reality, the measurement over 
a hemisphere is difficult to perform, and therefore a better option is to measure in two 
planes and average the diffusion coefficient values obtained for each plane.

In many applications the source position is well known. In performance spaces, for 
example, this is the location of the stage. In that case, it makes most sense to evaluate 
the diffusion coefficient for this specific angle of incidence, as the first order effects of 
a diffuser are of primary importance, especially if the concern is to remove echoes or 
coloration.

AES-4id-2001 stipulates that different radii polar responses might be used to check 
for focussing effects. If measurements are made at different radial distances from the 
surface, it is necessary to apply a correction to allow for the normal drop in level due 
to spherical or cylindrical spreading. Otherwise the diffusion coefficient is overly biased 
by drops in levels that naturally occur due to effects that are not related to a surface’s 
ability to diffuse.

4.4.3 Discussion

The autocorrelation diffusion coefficient ranks diffusers correctly and separates 
different surfaces along the diffusion axis. The coefficient has a clear physical basis 
in the autocorrelation function. However, it is not known exactly how the diffusion 
coefficient values relate to subjective response, which would be useful in evaluating 
the merits of diffusers.
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The experimentally measured and theoretically predicted diffusion coefficient values 
tend to be small. This can be seen by glancing at the coefficient values given in Appendix 
C. Values for the autocorrelation coefficient can in theory spread over the entire range 
from 0 to 1. A value close to zero has been measured for a concave surface designed 
to focus sound on a single receiver. A value of 1 can be measured for a small single 
semicylinder, but a single semicylinder on its own is not much use, because it cannot 
cover a wide area. As soon as more complex surfaces are introduced, such as a set of 
semicylinders, the diffusion coefficient is reduced, because of the lobing introduced. 
This lobing is unavoidable in extended structures, and so the diffusion coefficient 
is rarely close to 1 for usable and realistic diffusers and diffuser arrays. A single 
semicylinder may produce complete diffusion, but to cover a wall a set of semicylinders 
are needed. This is why it is important to measure application realistic samples, as the 
scattering from a single object is not representative of the response from a periodic or 
modulated array.

4.4.4 Diffusion coefficient table

Appendix C gives calculated values for normalized diffusion coefficients, for various 
surfaces, following the procedure in AES-4id-2001. The predictions were carried out 
using a 2D Boundary Element Model as described in Chapter 8. All surfaces were 
modelled as thin panel extrusions and the rear of the surfaces were not enclosed. 
Therefore, these represent the diffusion coefficient for single plane devices such as 
semicircular arcs. The source and receiver were 100 m and 50 m respectively from the 
surface. Each one-third octave band polar response was found by averaging seven single 
frequency responses. The random incidence diffusion coefficient values were found 
by an arithmetic average of the diffusion coefficient values for ten different angles of 
incidence (Paris’s formulation was not applied). The table reports three incident angles; 
normal, 57° and random incidence.

The first part of the table shows the effect of changing the number of diffusers in an 
array, illustrating that the diffusion coefficient for single and multiple devices are very 
different. The rest of the table keeps all the test sample widths the same, at about 3.6 m, 
to allow ready comparison. When comparing other diffusers in the table, it is important 
to compare like with like. For example, ensure that the diffusers being compared have 
the same maximum depth.

The second section shows the effect of diffuser depth on the diffusion coefficient. 
To do this, a set of semi-ellipses are used. As might be expected, as the semi-ellipses 
get deeper, they start diffusing at a lower frequency – although period width becomes 
a limiting factor for deeper devices, as discussed in Chapter 10. The third section 
shows the diffusion coefficients for different triangles – the scattering from triangles is 
discussed in detail in Chapter 10. The fourth section gives examples of what happens 
when ellipses are mounted on a flat baffle with spaces between – as might be expected, 
this reduces the dispersion generated at high frequencies.

The fifth part shows the performance that can be obtained from optimized curved 
surfaces, the design of which is discussed in detail in Chapter 10. The table values 
illustrate that the optimization design process is very effective. The sixth part gives 
results for flat and planar hybrid surfaces, where absorptive patches are used to 
generate dispersion; these diffusers are discussed in detail in Chapter 11. The seventh 
and last part gives data for a variety of reflection phase gratings: simple Schroeder 
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diffusers, fractal designs and optimized surfaces. These designs are discussed in 
Chapter 9. The Schroeder surfaces were modelled by meshing the entire surface so 
the predictions are valid above (and below) the limit where plane wave propagation 
becomes less dominant in the wells.

4.5 The scattering coefficient

4.5.1 Principle

The principle of a scattering coefficient is to separate the reflected sound into specular 
and scattered components. The specular component is the proportion of energy which 
is reflected in the same way as would happen for a large plane surface. The scattered 
components give the energy reflected in a non-specular manner. This is illustrated 
in Figure 4.22. The coefficient has a clear physical meaning and the definition is 
very useful for geometric room acoustic models, because these tend to have separate 
algorithms dealing with specular and scattered components. Therefore the separation of 
terms mimics the modelling methods. With this definition it is then possible to define a 
scattering coefficient, s, as the proportion of energy not reflected in a specular manner.

This definition takes no account of how the scattered energy is distributed, but as-
sumes that in most room acoustic applications there is a large amount of mixing of 
different reflections. Therefore, any inaccuracies that arise from this simplification will 
average out. This is probably a reasonable assumption for the reverberant field, where 
there are many reflections. However, it could well be troublesome for the early sound 
field, where the impulse response is dominated by a few isolated reflections and the 
correct modelling of these is essential for gaining accurate predictions. Section 4.4.1 
has already illustrated how scattering coefficients can give misleading results for the 
first order reflections from redirecting surfaces.

The scattering coefficient, like the diffusion coefficient, generally depends on 
frequency and angle of sound incidence. Similar to the random incidence absorption 
coefficient obtained in reverberation rooms, an angular average of the scattering 
coefficient – the random incidence scattering coefficient – can be defined. As a general 
assumption, the surface under test is assumed to be large and not too rough. The 
method will not work for isolated items and deep surfaces, as it is trying to measure 
the scattering from the surface roughness and not the edges. It also has problems when 
the surface absorption is high, as the coefficient estimation becomes inaccurate.

(1 s) (1 s)

(1 s) s
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reflected

incident

energy
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Figure 4.22 Definitions used for scattering coefficient (after Vorländer and Mommertz14).
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4.5.2 Rationale and procedure

The energies of reflections (normalized with respect to a reflection from a non-
absorbing flat surface) are expressed as follows:13

 
(4.4)

where Espec is the specular reflected energy; Etotal is the total reflected energy; s is the 
scattering coefficient, αs is the absorption coefficient, and αspec is the apparent specular 
absorption coefficient.

The apparent specular absorption coefficient warrants further description. It is the 
energy dispersed from specular reflection directions. This energy is not dissipated to 
heat; it is reflected into non-specular directions. Rearranging the above formulations 
gives the following equation for the scattering coefficient:

 (4.5)

The measurement of this quantity is easiest to explain in the free field, although it is 
in the diffuse field measurement where this process is useful and powerful. The set-up 
is shown in Figure 4.23. The specular absorption coefficient is found by rotating the 
test sample, while phase locked averaging the reflected pulses. Figure 4.24 shows 
three band pass filtered pulses for different orientations of a corrugated surface. The 
initial parts of the reflections are highly correlated; these are the specular components 
of the reflection, and remain unaltered as the sample is rotated. In contrast, the later 
parts of the three reflected pulses are not in phase and depend strongly on the specific 
orientation; this is the scattered component. By averaging the reflected pulse pressure, 
while rotating the sample, the scattered components are averaged to zero, and only 
the specular energy remains.

Transferring this procedure to the reverberation chamber, the measurement technique 
is as follows. A circular test sample is placed on a turntable and rotated. While the 
turntable is rotated, the room impulse response is repeatedly measured. The latter 
parts of the impulse response, which are due to the scattering from the surface, will 
cancel out, and the averaged impulse response only contains the specular reflection 
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component. This impulse response is then backward integrated to give the reverberation 
time, due to the specular reflection component. The reverberation time with the 
sample stationary (not rotating) can also be obtained and this decay is due to the 
total scattering – specular plus diffuse. By manipulating these reverberation times, it is 
possible to derive the specular and total reflected energy and, from Equation 4.5, the 
scattering coefficient.

In reality, four reverberation times are needed. It is difficult to get a perfectly flat and 
circular turntable; this is especially true for full scale measurements.30–32 Consequently, 
the imperfections in the turntable must be compensated for by additional measure-
ments. The four reverberation times that must be measured are shown in Table 4.1.

Once these reverberation times are measured, the following formulations are used to 
get the scattering coefficient. The random incidence absorption coefficient αs of the 
sample is calculated using:

 (4.6)

where V is the volume of the reverberation room; S is the area of the test sample; c1 
is the speed of sound in air during the measurement of T1; c2 is the speed of sound 
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Figure 4.24 Band limited reflected pulses for different sample orientations (after Vorländer 
and Mommertz14).

Table 4.1 The measurement conditions for the four different reverberation times

Reverberation time Test sample Turntable

T1 not present not rotating
T2 present not rotating
T3 not present rotating
T4 present rotating
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in air during the measurement of T2; m1 is the energy attenuation coefficient of air in 
m–1 during the measurement of T1 (see Sections 1.1.1 and 3.4), and m2 is the energy 
attenuation coefficient of air during the measurement of T2.

The specular absorption coefficient αspec is calculated using the following 
formulation:

 (4.7)

where c3 is the speed of sound in air during the measurement of T3; c4 is the speed of 
sound in air during the measurement of T4; m3 is the energy attenuation coefficient of 
air during the measurement of T3, and m4 is the energy attenuation coefficient of air 
during the measurement of T4.

Finally, the random-incidence scattering coefficient, s, is calculated using Equation 4.5. 
These reverberation times are measured using the standard procedures in ISO 354,33 
so multiple source receiver pairs are needed to average out spatial variation within 
the reverberation chamber. The measurement must use a deterministic source signal 
to allow the phase locked pressure averaging. In the original work, maximum length 
sequences were favoured, but these are rather sensitive to time variance, which means 
the measurement of the reverberation times with the turntable rotating must be done 
quickly. This is not a problem at model scale, but at full scale the turntable must move 
slowly. The signal periodicity must be longer than the reverberation time in the room, 
which means full scale measurements take a long time, as typically 72 measurements 
in a single rotation are needed. For this reason, some have favoured the use of swept 
sine waves, which are less sensitive to time variance errors.30,32

At full scale, the measurement is rather slow and laborious. There are some 
considerable logistical problems in fabricating a 3.6 m diameter flat turntable. For 
instance, the doors of the reverberation chamber are probably too small for the 
turntable to go through in one piece and so it needs to be dismantled, yet a completely 
flat and strong turntable when assembled must be made. Furthermore, a powerful, 
yet quiet motor is required.30,32 For these reasons, model scale measurements are to be 
preferred for speed and efficiency.

4.5.3 Sample considerations

Since the measurement method is intended to measure surface roughness, the results 
are only reliable when the structural depth of the sample is small compared to the 
size of the specimen. An empirically derived limit is h ≤ d/16, where d is the diameter 
of the turntable and h the structural depth. Figure 4.25 shows 1:10 samples of four 
commercial samples that were fabricated for scattering coefficient measurements. The 
measured scattering coefficients are very sensitive to edge conditions.32,34 If there are 
large variations in the structure along the edges of the samples, then excess scattering 
from the edges are measured. Even with shallow surfaces, the edge effects cause meas-
ured scattering coefficients to be larger than 1 at high frequencies. For instance, if a 
square sample is placed on top of a round base plate, the scattering from the square 
edges results in excessive scattering and misleading results. The solution is to recess 
square samples within the circular base plate, as shown in Figure 4.26. Figure 4.27 
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shows measurements for the different mounting conditions, indicating that the recessed 
sample mounting gives the best results.

4.5.4 Anisotropic surfaces

The scattering coefficients give potentially misleading values when a surface is aniso-
tropic. This is illustrated by Figure 4.28, where the scattering coefficients for a single 
plane and a hemispherical diffuser are compared. The single plane device produces a 
high value for the scattering coefficient, even though it is plane and extruded in one 
direction. To use a simplistic analysis, even if the scattering coefficient in the plane of 
maximum dispersion is 1, the scattering coefficient in the extruded direction must be 
close to 0. Therefore, it might be expected that the hemispherical coefficient would be 
somewhere around 0.5 – yet a value of 1 is obtained. This happens because the topology 
changes dramatically when the surface is rotated and, consequently, the surface is seen 
as being very good at scattering.

Figure 4.25 Four 1:10 scale models of commercial diffusers used to measure scattering 
coefficients. A small coin is placed in the centre of the photo to indicate scale.
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Figure 4.26 Mounting condition for non-circular samples.
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Figure 4.27 Scattering from a sinusoidal-shaped sample with different mounting conditions 
and sample shapes:

  square sample, proud edges;
  square sample, recessed edges; and
  circular sample (modified from Gomes et al.34).
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Figure 4.28 Scattering coefficients for two different diffusers and also the diffuser shapes. 
The left diffuser is a single plane device (FlutterFree®); the right diffuser is a 
hemispherical device (Skyline®). Multiple periods of each were used:

  single plane; and
  hemispherical.
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The ISO method often (if not always) produces high scattering coefficients for aniso-
tropic surfaces. A more strict measure of diffusion ability would be two coefficients in 
two orthogonal directions, as is done for the AES diffusion coefficient. But then most 
current room acoustic models can only deal with single hemispherical based scattering 
coefficients, so this more strict evaluation is incompatible with current geometric models.

4.5.5 Predicting the scattering coefficient

It is awkward to predict the random incidence scattering coefficient. The necessity to 
carry out the predictions for a large number of sample orientations makes the prediction 
tedious with a boundary element model. Furthermore, it would be anticipated that 
the reverberation chamber would introduce inaccuracies due to non-diffuseness and 
other effects commonly seen in absorption measurement. Nevertheless, it is possible to 
carry out predictions for the free field scattering coefficient, as a function of incidence 
angle, and use Paris’s formula (Equation 12.1) to get approximate random incidence 
values.

The free field scattering coefficient follows a similar principle to the random incidence 
coefficient. The measurement is done in an anechoic chamber and the receiver is placed 
in the specular reflection direction, as was shown in Figure 4.23. The surface is again 
rotated and the reflected pulses phase locked averaged. The energy remaining after the 
averaging is the specular energy. From this the scattering coefficient is obtained.

This measurement process can be mimicked in a boundary element model (BEM), 
although as noted above, it is rather tedious to do. Hargreaves35 did this for a sample 
of rectangular battens and obtained accurate predictions, but this was only done for 
a few single frequencies.

If a simpler numerical model is used, the prediction time can be greatly decreased. 
Indeed, for Schroeder diffusers, it is possible to draw up a very simple formulation 
for the scattering coefficient. The far field scattering from a Schroeder diffuser can be 
predicted, using a simple Fourier model as described in Chapters 8 and 9. The Fourier 
model is not exact, but it does give reasonably accurate predictions of the scattering 
from the surfaces except at low frequencies and large angles of incidence or reflection. 
Under this approximate model, the pressure scattered from the surface, ps, is given by:

 (4.8)

where: ψ is the angle of incidence; θ the angle of reflection; Np the number of periods; 
N the number of wells in a period; w the well width; k the wavenumber; dn the depth 
of the nth well, and A is a constant.

This approximate theory enables a simple formulation for the scattering coefficient 
to be derived. In addition, the polar response can also be calculated from Equation 4.8 
and so the diffusion coefficient can be found. Hence, a comparison of the diffusion 
and scattering coefficients can be made.29 The scattering coefficient is not the ISO 
coefficient, however. Instead, it is a free field version of the Mommertz and Vorländer 
coefficient13,14 derived following a similar philosophy.

The free field scattering coefficient is evaluated by finding the invariant energy, Espec, 
in the specular direction (ψ = –θ), when the surface is moved. Equation 4.8 is a single 
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plane formulation, so it is natural to translate the surface. The surface has been assumed 
infinitely large, so that edge effects are not significant. In this case, the averaging is 
done by translation over a complete period. In this ideal case, the scattering does not 
change with translation, because the receiver is in the specular reflection direction and 
all the terms, which vary when the surfaces moves, cancel out. The specular or invariant 
energy can be shown to be:

 
(4.9)

where A′ is a constant.
The invariant energy is placed in a ratio with the energy from a flat plane surface for 

normalization purposes.13 This then gives a specular reflection coefficient, Rspec:

 

(4.10)

This then represents the proportion of energy that is reflected in a specular manner by 
the surface, and so the scattering coefficient can be readily evaluated:

 (4.11)

The scattering coefficient is independent of angle of incidence and so averaging over 
multiple angles of incidence is not needed – in this special case the random incidence 
coefficient is numerically identical to the free field case. This is similar to the prediction 
model Embrechts et al.36 produced for Gaussian rough surfaces.

Equation 4.11 shows that to get the greatest scattering, the sum of the reflection 
coefficients exp(-2kjdn) must be evenly spaced around the unit circle. This is achieved 
for the modified versions of the primitive root diffuser37,38 at integer multiples of a 
design frequency, as discussed in Chapter 9. This is illustrated in Figure 4.29 (the line 
labelled ‘Correlation scattering coefficient’ can be ignored for now). At multiples of 
the design frequency, the scattering coefficient, using Equation 4.11, is one. (Except 
at the flat plate or critical frequency of (N–1)f0 = 3 kHz.) This complete scattering at 
the design frequency and multiples thereof, simply means no energy is in the specular 
direction. It does not necessarily say how good the dispersion produced is. This is why 
diffusion coefficients are numerically less than the free field scattering coefficient.

The free field scattering coefficient is given by the sum of the reflection coefficients 
squared – there is no dependence on the order of the wells in the diffuser. Although the 
distribution of polar response energy changes with the order of the wells, the energy 
actually moved from the specular reflection direction does not. Consequently, while 
the diffusion coefficient will vary if the order of the wells is changed, the scattering co-
efficient will not. This is another illustration of why the diffusion coefficient is a more 
strict test of diffuser quality.

2

1 1

2

= =

p

n

N

np

N

n

jkd
spec eAE

2

2

1 1

2

'

'

NNA

eA
R

p

N

np

N

n

jkd

spec

p

n

= ==

2

1

211
=

=
N

n

jkd ne
N

s



Measurement and characterization of diffuse reflections or scattering 143

4.6 The correlation scattering coefficient – from polar 
responses to scattering coefficients

Mommertz presented a method for evaluating a scattering coefficient from polar re-
sponses. This correlates the scattered pressure polar responses from the test surface 
and a reference flat surface39 to give a scattering coefficient. This will be called the 
correlation scattering coefficient δc. The coefficient is given by:

 

(4.12)

where p1 is the pressure scattered from the test surface; p0 is the pressure scattered 
from the flat surface; * denotes complex conjugate; θi the receiver angle of the i th 
measurement position, and n is the number of measurements in the polar response.

An alternative description of this coefficient was given by Embrechts et al.36 who 
described it in terms of an LMS problem, which might be a more familiar description 
to anyone with a signal processing background.

This is not the same as the ISO coefficient or the free field scattering coefficient. 
This is illustrated in Figure 4.29, where the scattering coefficient from Equation 4.11 
is compared to the correlation scattering coefficient for a primitive root diffuser. This 
difference arises because the coefficient definition is different. The free field Mommertz 
and Vorländer method measures the amount of energy moved from the specular 
direction when the surface is moved. The correlation scattering coefficient measures 
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Figure 4.29 Various scattering and diffusion coefficients for a primitive root diffuser with 
a design frequency of 500 Hz:

  scattering coefficient using Equation 4.11;
  normalized diffusion coefficient; and
  correlation scattering coefficient (modified from Cox and D’Antonio29).
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the dissimilarity between the test and flat surface scattering over a polar response. In 
the case of randomly rough surfaces, the two coefficients probably are similar, but for 
diffusers with distinct polar responses, this is not the case.

Although the correlation scattering coefficient is not identical to the ISO scattering co-
efficient, it does illustrate and help contrast the performance of diffusion and scattering 
coefficients.29 One useful property of the correlation scattering coefficient is that it is 
readily predicted. Consequently, it is possible to compare prediction and measurement 
in a 2D polar response for a single cylinder and a set of cylinders. Predictions were 
carried out using a BEM (see Chapter 8) and measurements in a 2D goniometer (see 
Section 4.1). Figure 4.30 compares the predicted and measured correlation scattering 
coefficients and a good match is achieved. This provides evidence that the coefficient 
can be predicted and that the measurement system used is robust. It was feared that the 
measurement system might have difficulties, as accurate pressure magnitude and phase 
is needed, but this did not occur. Problems might occur, however, in measurements 
where exact microphone position replication is not achieved, for example, if a moving 
boom arm is used or where time variance cannot be maintained between the reference 
surface and diffuser measurements.

Kosaka and Sakuma40 examined predicting the correlation scattering coefficient using 
a 3D BEM and explored some of the practical requirements for accurate results. The 
receiver and sources should be at least a diameter away from the test sample to ensure 
near field effects do not cause significant errors in the scattering coefficient. They found 
a 5º spatial resolution was required and that two single frequency evaluations per one-
third octave band were useful for rough evaluation of scattering coefficients. At least 
10 periods need to be tested for a periodic sample.

Embrechts et al.41 examined a sine-shaped surface and found significant differences 
between prediction and measurements. At high frequencies, they mainly attribute the 
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Figure 4.30 Comparison of predicted and measured correlation scattering coefficients:
  prediction, 1 cylinder; 
  measurement, 1 cylinder;
  prediction, 4 cylinders; and
  measurement, 4 cylinders.
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differences to a number of experimental issues leading to an over estimation of the 
scattering. Low frequency measurement errors were thought to arise from the surface 
producing low scattering. Therefore, the measurements became rather inaccurate and 
uncertainties inherent in decay slope measurements mean a measured value of exactly 
zero for the scattering coefficient can never be obtained.

A sample of a single plane QRD® has also been tested at 1:5 scale. One period of 
the sample is shown as an insert in Figure 4.28. About 4 periods were used in the 
final sample. The sample was measured in the 2D goniometer first with the QRD 
wells perpendicular to the measurement arc and then with the wells parallel to the 
measurement arc. For each sample orientation, three incidence angles (0, 30 and 60°) 
were measured. These measurement results were then averaged to give an approximate 
random incidence coefficient. A similar sample was measured using the ISO method 
in a model reverberation chamber. The results are compared in Figure 4.31. There is 
reasonable correspondence between the random incidence and correlation scattering 
coefficients, although in two frequency bands the results are significantly different. For 
example, for the 3.2 kHz octave band the random incidence measurement exceeds 1, 
something that cannot happen with the correlation scattering coefficient. However, 
considering one measurement is done in a diffuse field and the other in the free field, 
the match is actually quite good, better than many have obtained when diffuse and free 
field absorption coefficients are compared.

Also shown in Figure 4.31 is the scattering coefficient predicted using the simplest 
Fourier model, Equation 4.11. The prediction accuracy is surprisingly good consid-
ering that the Fourier theory makes many assumptions which are not entirely correct 
for this type of surface.

Figure 4.31 also shows the normalized diffusion coefficient for the diffuser. In this 
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Figure 4.31 Various diffusion and scattering coefficients for a Schroeder diffuser. Diffuser 
was shown top left in Figure 4.28.

  correlation scattering coefficient;
  random incidence ISO scattering coefficient (with error bars);
  normalized diffusion coefficient;
  scattering coefficient predicted using Equation 4.11.
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case, the scattering and diffusion coefficients agree as to the frequency at which 
significant scattering/diffusion begins (≈500 Hz). Again, the diffusion coefficient is 
numerically less than the scattering coefficients, as discussed earlier.

The polar response measurement system can also be used to illustrate some other key 
differences between scattering and diffusion coefficients. For example, in Section 4.4.1 
the case of redirection was discussed. Another example is shown in Figure 4.32, 
which illustrates the effects of a focussing surface. The surface is designed to focus 
the sound on one microphone in the receiver arc. The diffusion coefficient interprets 
the focussing surface as being worse at diffusing sound than the plane surface. The 
normalized diffusion coefficient is less than zero for virtually every frequency. The 
correlation scattering coefficient, however, interprets the focussed polar response as 
being different from the plane surface and interprets this as being increased scattering. 
This illustrates that scattering coefficients should not be used to interpret single surface 
items, but should only be used for large surfaces with roughness. Furthermore, it shows 
that when evaluating diffusers, it is necessary not only to test the far field, but also to 
test at receiver positions where aberrations such as focussing may occur.

4.6.1 Scattering coefficient table

Appendix C gives a table of scattering coefficients for single plane diffusers. Some 
details of the geometry were given in Section 4.4.4, along with the rationale behind the 
choice of surfaces used in the prediction. The table includes all the surfaces included 
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Figure 4.32 Top: polar responses for:
  flat surface;
  concave sample. 
 Bottom: diffusion and scattering coefficients for concave sample:
  correlation scattering coefficient; and
  normalized diffusion coefficient.



Measurement and characterization of diffuse reflections or scattering 147

in the diffusion coefficient table, except hybrid surfaces. The formulation for the 
correlation scattering coefficient needs to be revised for surfaces which partially absorb, 
because the current formulation interprets any absorption as being scattering.

The random incidence values tend to have raised values at low frequencies, especially 
for deep surfaces; values of up to 0.2 at 100 Hz are measured for many surfaces. 
At oblique incidence, edge scattering becomes important and the edges of the test 
samples are very different from the reference flat surface. Better results might be 
obtained if a reference surface with the same overall thickness as the test sample was 
used. Furthermore, because the rear of the test surfaces was not enclosed in a box, 
the scattering from the rear of the surface may also be having some effect at low fre-
quency.

The scattering coefficient does not discriminate between different diffusers in a 
consistent manner – see the values for the optimized curved surfaces compared to the 
semi-ellipses, for example. The coefficient also interprets redirection as scattering. For 
instance, a 45° triangle returns a strong reflection back to a normal source, as discussed 
in Chapter 10, yet the scattering coefficient interprets this as dispersion. Nevertheless, 
with care, this published table of scattering coefficients can be used by geometric room 
acoustic modellers, as discussed in Chapter 12.

4.7 Contrasting diffusion and scattering coefficients – 
a summary

The scattering coefficient method gives a quick and rough estimate of the scattering 
process. It should not be used to evaluate the worth of surfaces when designing or 
specifying diffusers. The scattering coefficient is only concerned with how much energy 
is moved from the specular direction, it does not measure the quality of dispersion. For 
this reason, diffusing surfaces need to be evaluated using the diffusion coefficient when 
the quality of scattering is important. The diffusion coefficient should not, however, be 
blindly used in geometric room acoustic models as its definition is not compatible with 
the surface scattering models used in current geometric algorithms.

There are many issues surrounding these coefficients that remain to be resolved. 
One common question is whether there is a direct link between the coefficients and a 
physical property of the space. This arises because practitioners are used to a direct 
link between the absorption coefficient and the reverberation time. For diffusion and 
scattering there is no simple relationship, but maybe future research should include 
investigating what relationships, if any, exist between these coefficients and the room 
acoustic quality.

4.8 Other methods for characterizing diffuse reflections

There have been other methods developed to characterize the scattering from surfaces. 
They are noted here because they may yet develop into practical and used processes. 
The first method is a pragmatic approach, which has similarities to in situ absorption 
methods – maybe it will be developed into an in situ measurement method for diffusion 
coefficients. The second method tries to characterize the effect of diffuse reflections by 
investigating the change in diffuseness of a space. Finally, evaluating the comb filtering 
in the total sound field and temporal diffusion are discussed.
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4.8.1 Measuring scattering coefficients by solving the inverse 
problem

This method was developed and published by Farina;42 what is described below is a 
variation on the technique. In the description below, the general principle is discussed 
so that readers can get a sense of the process used.

The sound field in the vicinity of a diffuser is measured using a deterministic signal 
to gain the impulse response. It is necessary to make the measurements over many 
different spatial positions, these could be on an arc, as was done for the diffusion 
coefficient measurement, or if more convenient, these could be on a straight line parallel 
to the diffuser surface. The reflected impulse response is isolated by time windowing, 
as was done in Section 4.1, and then the frequency response found by using a Fourier 
transform. The frequency response is then normalized to a measurement of the incident 
sound field without the diffuser present to make the measurement independent of the 
source frequency response and sound power level.

The process is to predict the measured scattering from the surface using a geometric 
model and compare the predicted and measured polar response. The scattering and 
absorption coefficients within the geometric model are varied until the error between 
the predicted and measured polar responses are minimized. This is a trial and error 
process, which can be solved using an exhaustive search. The number of combinations 
to be tried is rather small if we assume the absorption and scattering coefficients only 
need to be varied in increments of say 0.01, and consequently, it is possible to simply 
do a complete check of every possible combination to find the correct coefficients.

This is a pragmatic approach to finding scattering coefficients. This process will 
probably give the coefficient most appropriate within the geometric model for randomly 
rough surfaces. Problems may arise, however, because the scattering coefficient will be 
dependent on the geometric model used, so this does not give a robust parameter for 
all models. The coefficient will only be as useful as the quality of the geometric model’s 
diffuse reflection algorithm.

Problems also arise when the scattered polar response does not match any of the 
possible polar responses generated by the geometric model. Although Farina’s paper 
shows good matches being achieved, many other diffusers have responses that do not 
match geometric models well. For instance, polar responses with a small number of 
distinct lobes (see Figure 10.11) are polar responses unlike anything that a geometric 
model will produce. In this case, the best matched scattering coefficient is likely to 
be nonsensical. This will happen with periodic devices at low- to mid-frequencies, as 
well as triangles and pyramids. This could be cured, however, by using more accurate 
dispersion patterns in the geometric model.

A further problem may occur from an ambiguity between the effects of scattering and 
absorption. There may be several good fits to the polar response, resulting from 
different combinations of absorption and scattering coefficients. Within experimental 
error, there will be a range of possible coefficients which could be used.

4.8.2 Room diffuseness

When surface diffusers are applied to a non-diffuse space, the volume diffuseness of the 
room will alter. Consequently, by measuring acoustic characteristics of a room before 
and after diffusers are introduced, it is possible to try and infer the scattering coefficient 
of the diffusers by the effect they have on the volume acoustic.35
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Consider the room shown in Figure 4.33a. It is a reverberation chamber with one 
wall covered in highly absorbent material. This is a highly non-diffuse space and the 
sound decay will be non-linear. If a diffuser is placed on another surface, Figure 4.33b, 
then the diffuser will scatter sound onto the absorbent, the reverberation times in the 
room will decrease, and the sound decays will become more linear. The issue here is 
the appropriate volume characteristic of the space to monitor the change in diffuseness.

A pragmatic approach, very similar in philosophy to Farina’s method from the 
previous section, would be to use a geometric model to predict the sound field in the 
space. The geometric model is used to predict the acoustic in Figure 4.33a without 
diffusers, and this then enables the absorption of the walls of the reverberation chamber 
to be set by adjusting the values in the model until measurement and prediction match. 
Reverberation time would be an appropriate parameter to monitor. Then the diffusers 
are introduced. Again the model is tuned, this time changing the absorption and 
scattering coefficients on the floor with diffusers, until the best match between measure-
ment and prediction is obtained. This process has the same disadvantages as that 
outlined for Farina’s method in the previous section. The ambiguity between scattering 
and absorption is greater, as both affect the reverberation time. But most troublesome 
is the reliability and robustness of the geometric model used. These models are most 
inaccurate for non-diffuse spaces, which is exactly the test space deliberately created.

Consequently, it is best not to use a geometric model and to instead use the measured 
reverberation times in another way. The largest reverberation time obtained is for the 
test room before diffusers are applied (see Figure 4.33a). This is the case where the 
floor has a scattering coefficient of zero. If it were possible to obtain a lower limit 
for the reverberation time with diffusers present, the lowest achievable reverberation 
time when the maximally diffusing diffuser is applied, then this could be equated 
to a scattering coefficient of 1 for the floor. It would be straightforward to obtain a 
scattering coefficient from the actual measured reverberation time with a test sample by 
simple scaling. The problem, however, is obtaining this lower bounding limit. In theory, 
this limit would be the reverberation time predicted by Eyring’s equation, but this can 
only be achieved if diffusers are applied to at least three surfaces, so that no surface and 
its opposite pair are untreated. For this reason, to carry out such a test method would 
involve large quantities of surface diffusion, far more than would be practical.

(a) (b)

Figure 4.33 (a) A reverberation chamber with one wall made of absorbent (shown 
shaded). 
(b) The chamber with a test sample on floor.
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4.8.3 Temporal evaluation

The diffusion coefficient only monitors the sound energy scattered from the diffuser. 
Consequently, the phase and the temporal response have been neglected. With a single 
cylinder or hemisphere it is possible to produce good spatial dispersion, but without 
temporal dispersion. With most diffusers, on the other hand, good spatial dispersion 
also means that temporal dispersion is generated. Consequently, while current diffuser 
evaluation concentrates on energy dispersion, in the future it might also become 
necessary to look at the phase in the polar response or the reflected impulse response. 
Pertinent comments about this point can be found in Chapter 10, where the scattering 
from cylinders is discussed. The scattering coefficients implicitly deal with time 
dispersion, because of their definition.

One approach for evaluating the temporal dispersion is to look at decay character istics. 
Redondo et al.43 carried out a backwards integration44 of the impulse responses of the 
sound scattered off various surfaces, to examine the decay time. Figures 10.3, 10.18, 
10.26 and 10.28 show the impulse responses for a plane surface and various semi-
cylinders (they can also be seen in Figure 4.36 later in this chapter). Figure 4.34 shows 
the decay curve for the four surfaces. Both the plane surface and the single semicylinder 
produce little temporal dispersion. This is reflected in the graph, as the sound energy 
decays rapidly. The four semicylinders have two strong reflection arrivals (because of 
symmetry there are two, rather than four, arrivals; see Figure 10.26 or Figure 4.36), 
and these arrivals appear as sudden drops in the decay curve. The surface that creates 
most temporal dispersion, the random array of semicylinders, has the longest decay 
time as might be expected. However, this analysis is only qualitative, and the perceptual 
significance of the different artefacts in the decay are currently not quantified.

In reality, the listener hears a fusion of the direct sound from the source and the 
reflection from the surface. This has led some to suggest that the total field (direct plus 
scattered) is an appropriate way of measuring the effectiveness of diffusers to reduce 
coloration. It certainly gets around all the problems of having to separate the direct 
and reflected sound by measuring impulse responses.
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Figure 4.34 The decay of scattered sound from four surfaces:
  flat surface;
  1 semicylinder;
  4 semicylinders; and
  random array of semicylinders. 
 The corresponding impulse responses can be seen in Figures 10.3, 10.18, 

10.26 and 10.28.
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The autocorrelation function offers a way of checking for the randomness of signals, 
including impulse responses.20,45,46 The weighted autocorrelation, s′xx, is given by:

 
(4.13)

where sxx is the normal autocorrelation function, τ the delay variable and b a weighting 
function shown in Figure 4.35. This weighting function makes allowance for the time 
dependence of the reflections audibility. If a strong single reflection occurs at time τ0, 
then it will cause audible coloration if:

 
(4.14)

The results from examining the various impulse responses for a plane surface and 
semicylinders are shown in Figure 4.36. The maximum value in the sidebands of the 
autocorrelation function does decrease as more semicylinders are introduced and the 
sound becomes less specular. However, all of the plots shown exceed the threshold 
indicated by Equation 4.14. So coloration probably occurs in all cases. Furthermore, 
Equation 4.14 is based on the threshold of audibility, so it cannot be used to analyze 
whether there is an audible difference between the four cases, because they are all above 
threshold. Maybe the maximum value in the sidebands of the autocorrelation can be 
used as a measure of the amount of coloration, but that is untested.

However, both of the above approaches do not fully account for how the ear 
processes sound. Using an understanding of how the ear processes the total sound field, 
a more complete but complex method can be used.

For short delay times between the incident and reflected sound, say less than 25 ms20,47 
or a path length difference of 8.5 m, the dominating feature is the variation in the freq-
uency response – the comb filtering – examples of which can be found in Chapter 10 
and heard in most bathrooms.

For delays between 25 and 50 ms, equivalent to path length differences of 8.5 and 
17 m, the dominant audible effect caused by the interference between direct sound and 
reflections is temporal fluctuations. To quantify this, one possible approach might be to 
use an adapted sound quality metric such as roughness,48 which is used to quantify the 
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Figure 4.35 Weighting curve for examining coloration (after Bilsen45).

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40

t (ms)

b



152 Measurement and characterization of diffuse reflections or scattering

subjective perception of rapid (15–300 Hz) amplitude modulation. However, even in 
sound quality testing, metrics such as roughness have a mixed history of success.

For delays beyond 50 ms, then strong reflections have the potential to be heard 
as separate sounds. Then criteria for the audibility of echoes could be considered20 
or, where there are large numbers of diffusers, some measure of the evenness of the 
reverberation.49 Such criteria might be applied to monitor the effectiveness of diffusers 
in situ when used to control echoes, but the delay times are so long that they are not 
of interest for measuring diffusers within the laboratory.

As the above has shown, as the source and receiver positions change, the auditory 
effects alter because of the changing path lengths. The problem with total sound field 
evaluation is that it is so dependent on the geometry. The depth and frequencies of 
the minima and maxima in the comb filtering are strongly dependent on the delay 
time and relative level between the direct and reflected sound and hence on the source 
and receiver distances.

The total sound field might be analyzed in the critical bandwidths of the ears to 
examine whether the minima and maxima in the spectra are audible.50 To be able 
to hear the effects of comb filtering, the analysis bandwidth of the ear, the width of 
the critical bands must be of a similar size to the frequency spacing of the minima 
and maxima. Provided delay times are <25 ms, so that frequency response variation 
dominates what is heard by the listener, then there are a number of options for 
quantifying the coloration. The most promising are those that attempt to mimic the 
processing of the ear.

Figure 4.36 Left column: the impulse responses and right column: the weighted auto-
correlation functions for the scattering from various surfaces. From top to 
bottom: plane surface, 1 semicylinder, 4 semicylinders, and random semi-
cylinders.
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The sound is initially passed through a bank of auditory filters that mimic the action 
of the cochlear which breaks sound into critical bands. This can be done according to 
the Bark scale51 or similar. Figure 4.37 shows such an analysis for the plane surface 
and the random array of cylinders where equivalent rectangular bandwidths (ERBs) 
have been used.52 Based on this representation, there are two evaluation methods: one 
based on the spectrum and the other on the autocorrelation.53 Consider the former, 
which uses the ratio of the minimum and maximum energy in the spectrum. This ratio 
is examined to see if it exceeds some threshold value; this essentially quantifies the 
unevenness of the spectrum. Figure 4.37 shows an interesting result, however. Above 
500 Hz, where the cylinders are diffusing, the spectrum for the plane surface has less 
variation than that for the diffuser, which contradicts expectation. When processing 
musical signals, the brain looks for regular harmonic structures to determine pitch 
and these periodic structures are also important for timbre. Consequently, further 
work is need to understand how the brain processes the regular periodic patterns that 
arise from comb filtering in comparison to the more random total field generated by 
a diffusing structure.

4.9 Summary

This chapter has mapped out some of the measurement techniques used for diffuse 
reflections. It might be anticipated that the use of scattering and diffusion coefficients 
might increase in the future, as practitioners want quantifiable evidence of how 
surfaces scatter and better predictions from geometric models. Having two coefficients 
gives potential for much confusion. Therefore, it is important that practitioners and 
researchers are educated about the difference, because using the wrong coefficient could 
lead to poor predictions or bad designs.
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5 Porous absorption

Typical porous absorbers are carpets, acoustic tiles, acoustic (open cell) foams, curtains, 
cushions, cotton and mineral wools such as fibreglass. They are materials where sound 
propagation occurs in a network of interconnected pores in such a way that viscous and 
thermal effects cause acoustic energy to be dissipated. As discussed in Chapter 1, they 
are used widely to treat acoustic problems, in cavity walls and noisy environments to 
reduce noise and in rooms to reduce reverberance. This chapter will detail the physical 
processes producing the absorption and theoretical models for predicting absorption 
properties.

The first section gives a qualitative description of the use of porous absorbers; this 
will be followed by some example materials in Section 5.2. These materials range from 
standard well-known materials, such as mineral wool, to more recent developments, 
such as absorbent plaster systems. Section 5.3 and onwards then outlines the methods 
needed to predict the absorption. The theoretical sections start by outlining how 
the sound propagation within a porous absorbent might be modelled in terms of 
characteristic parameters of the material. There are empirical and semi-empirical 
approaches and both are detailed. The chapter then proceeds to show how these 
acoustic parameters are combined with mounting conditions, to enable the absorption 
coefficient and surface impedance to be predicted, which is ultimately what is required 
in design.

5.1 Absorption mechanisms and characteristics

When sound propagates in small spaces, such as the interconnected pores of a porous 
absorber, energy is lost. This is primarily due to viscous boundary layer effects. Air is 
a viscous fluid, and consequently sound energy is dissipated via friction with the pore 
walls. There is also a loss in momentum due to changes in flow as the sound moves 
through the irregular pores. The boundary layer in air at audible frequencies is sub-
millimetre in size, and consequently viscous losses occur in a small air layer adjacent to 
the pore walls. As well as viscous effects, there will be losses due to thermal conduction 
from the air to the absorber material; this is more significant at low frequency. For the 
absorption to be effective there must be interconnected air paths through the material; 
so an open pore structure is needed. The difference in construction between an open and 
closed pore system is shown schematically in Figure 5.1.1 Losses due to vibrations of the 
material are usually less important than the absorption as sound moves through the pores.

Figures 5.2 and 5.3 show the absorption coefficients for two porous absorbers 
illustrating the effect of material thickness. The porous absorber is mounted on a rigid 
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backing. These curves follow the characteristic shape of porous absorption coefficients, 
a high pass filter response, although the curves can shift in frequency and move up 
and down in absorption depending on the characteristics of the particular material 
and how it is mounted.

As the thickness of the porous material increases, the absorption at low frequency 
usually increases. For the porous absorber to create significant absorption, it needs 
to be placed somewhere where the particle velocity is high. The particle velocity 
close to a room boundary is usually zero, and so the parts of the absorbent close 
to the boundary generate insignificant absorption. It is the parts of the absorbent 
furthest from the backing surface which are often most effective, and this is why thick 
layers of absorbent are needed to absorb low frequencies. A rough figure sometimes 
quoted is that the material needs to be at least a tenth of a wavelength thick to cause 
significant absorption,2 and a quarter of a wavelength to absorb all the incident sound. 
Consequently, substantial absorption cannot be achieved by simply applying a thin 

Figure 5.1 Illustration of the difference between closed (top) and open (bottom) pore 
structures (adapted from Cremer and Müller1).
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layer of paint. As the material very close to the boundary is absorbing relatively little, 
it is possible to simply space porous absorbers away from a wall and get good per-
formance. Figure 5.3 shows a simple way of achieving this by shaping acoustic foam 
into a rough sinusoidal shape.3 The acoustic absorption achieved is also given.

The amount of energy absorbed by a porous material varies with angle of incidence 
as illustrated in Figure 5.4. For a mineral wool with high absorption, as illustrated by 
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the top right plot, then the absorption first increases as the angle of incidence moves 
away from the normal to the surface, before tailing off as the source moves around to 
grazing. The performance varies most with angle of incidence for the least dense mineral 
wools. Another feature of note is that it is important to get the right density of mineral 
wool (or to be more correct, the right flow resistivity). With too high a flow resistivity 
the impedance mismatch between the air and the absorbent causes the sound to reflect 
from the front face and the absorption reduces.

For low frequencies, where the wavelength is large, one has to go a considerable 
distance from the wall to reach a point where the particle velocity is significant. This 
makes porous absorbers inefficient and not particularly useful at low frequency. At bass 
frequencies, resonant structures will produce greater absorption from a given depth, 
as discussed in Chapter 6, or maybe this can be achieved through active absorbers, as 
discussed in Chapter 13. To get broadband passive absorption across the frequencies of 
most interest to design, usually requires a combination of resonant and porous absorption.

5.1.1 Covers

Often porous absorbers are covered in cloth or plastic. For instance, a thin impervious 
membrane might be used to wrap a fibrous absorbent when it is used as a duct 
lining material, to prevent fibres being lost within the ventilation system. Impervious 
membranes such as plastic will reduce the high frequency absorption, as the impedance 
tube measurements in Figure 5.5 show. At low frequencies, the membrane’s acoustic 
mass is small and the sound passes through the membrane largely unaltered – although 
a small increase in absorption due to the added mass of the membrane may occur. At 
high frequencies, however, the membrane’s acoustic mass is high and it will prevent 
some or all of the sound energy entering the porous absorber. This membrane effect is 
why porous absorbers should not be painted except with a non-bridging paint. Most 
paints will block the pores, prevent sound waves freely entering the structure and so 
reduce the absorption.

Within rooms, porous absorbers are often finished by cloth wrapping to protect 
the absorbent material and make it look better. The cloth wrapping potentially has 
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little effect on the absorption obtained, provided the cloth freely allows sound to enter 
the porous absorbent. If glue is used to fix the cloth to the front face of the absorber, 
however, care must be taken to ensure the high frequency absorption is not reduced, 
because the glue prevents sound entering the porous material.

Porous materials are often mounted behind perforated panels to protect the absorbent 
from damage. If the perforated sheet does not have a very open structure, with a 
large per cent open area, the mass effect of the holes will increase the absorption at 
low frequency but decrease absorption at high frequency, as shown in Figure 5.5. 
Although it is commonly quoted that a greater than 20 per cent open area means that 
the perforated sheet has no effect,4 the results for hybrid diffuser-absorbers given in 
Chapter 11 illustrate that even a 50 per cent open area perforated sheet can have a 
significant effect on absorption. The transfer matrix techniques outlined in Chapter 6 
can be used to predict the effects of perforated sheets on absorption. For membrane-
wrapped porous material behind a perforated sheet, it is important that the membrane 
and perforated sheets are not in contact, otherwise the absorption is decreased.4

5.2 Some material types

5.2.1 Mineral wool

There is a bewildering array of materials available which exhibit porous absorption. 
Mineral wool is made from materials such as sand, basaltic rock and recycled glass. 
The raw materials are melted at high temperature and then spun or pulled into woolly 
filaments. The filaments are bonded together to give the product its physical shape, with 
roughly 1–5 per cent of the final product weight being binder.5 Glass fibre is made up of 
the same raw ingredients as normal glass such as sand, limestone and soda ash, and the 
manufacturing process is similar to rock or basalt wool, although rock and basalt wool 
products tend to be heavier. The acoustic absorption achieved is determined by the fibre 
composition, fibre orientation, fibre dimensions, product density, and the quantity and 
nature of the binder used. The mineral wool can be in the form of semi-rigid boards or 
loose blanket. Compressed mineral fibre board is the basis of the ubiquitous absorbing 
ceiling tiles mounted in t-bar grids.

Man-made mineral wools are cheap to manufacture and can be partially recycled. 
However, the manufacturing process uses considerable energy which increases the 
environmental impact of the material. The acoustic performance of mineral wool 
can vary with density, and for low densities the high frequency absorption can be 
reduced. Density alone, however, is not sufficient to predict acoustic performance, 
because the fibre diameter is also a crucial factor, as the formulations later in this 
chapter show. Mineral wool is often laid down in layers and so is anisotropic. For this 
reason, the acoustic properties vary depending on whether sound is incident parallel or 
perpendicular to the fibres, although for simplicity this is often ignored in prediction 
models.

There have been some concerns about the long-term health effects of man-made 
vitreous fibres (MMVFs), which have helped develop a market for non-MMVF and 
fibreless absorbers. MMVFs are known to be irritants, causing skin, eye and upper 
respiratory tract irritation; the irritation is usually caused by mechanical action 
rather than an allergic reaction. Of particular concern are fibres with diameters of 
<3 µm, which can reach the pulmonary regions of the lung and form the greatest 



Porous absorption 161

cancer hazard. In the past, the lack of scientific data led authorities to give cautionary 
classifications to MMVF. However, more recent studies have failed to find evidence 
that MMVF are a significant risk to health. Indeed, in 2002, The International Agency 
for Research on Cancer, which is part of the World Health Organization, reclassified 
mineral wool as category 3: “not classifiable as to their carcinogenicity to humans”, 
meaning there is no strong evidence that mineral wool is carcinogenic to humans.6,7

5.2.2 Foam

Foams can have open or closed cell structures. With open cell structures the pores are 
interconnected and significant absorption can result. Closed cell structures, on the 
other hand, do not permit the passage of sound and so the absorption is rather low. 
It is possible, however, to perforate closed foam structures at the end of manufacture 
and so provide moderate absorption by interconnecting the pores. Consequently, it 
is important to check that acoustic foam is used where sound absorption is needed. 
The fire rating of acoustic foams needs to be checked, especially when they are used 
in buildings.

5.2.3 Sustainable materials

To minimize environmental impact, acoustic treatments need to be made from recycled 
materials or resources that are natural, plentiful or renewable. The materials should 
be sourced locally or regionally. The product themselves should be recyclable, reusable 
and/or biodegradable. During manufacture, waste recycling, green power and resource-
efficient manufacturing processes need to be considered. Recycled or recyclable product 
packaging needs to be used and the environmental impact of transportation considered. 
Ideally, a full life cycle of a product should be assessed, but in many cases this is not 
possible.

Sheep wool has been suggested as a possible replacement for mineral wool, and has 
the advantage of having a much lower impact on global warming than man-made 
mineral fibres.8 However, in forms which are easy to manufacture, it is inherently a low 
density (10–100 kgm–3), low flow resistivity material (500–15,000 MKS rayls m–1), and 
so it needs to be relatively thick (5–10 cm) to achieve high absorption.9 It is useful in 
sound insulation applications, filling cavity walls, where infill material does not have 
to have very high absorption coefficients to be effective.

There is great interest in trying to make acoustic absorbers from recycled materials, 
whether that be recycled cloth, metal, foams, wood, plastics or rubber. To take one 
example, researchers have been investigating recycling tyres as acoustic absorbers.10 The 
hope is that the elastic properties of the material will also enable the rubber to cushion 
the effects of crashes if these are used in road side barriers. The other advantages 
that tyres offer are that they can be painted, and will survive the harsh environment 
around roads better than standard fibrous materials. The rubber is broken up into 
small granules, and these are then bonded together with a binder. The key is to use 
enough binder to hold the granules together without blocking the air pores, which 
are crucial to absorption, and to get the right grain size and shape. To take another 
example, Swift and Horoshenkov11 showed that loose granulated mixes of waste foam 
with particle sizes <5 mm, can be pressed into consolidated, elastic, porous media with 
a high proportion of open and interconnected pores and good absorption properties. 
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Pfretzschner10 tested rubber granular diameters ranging from 1.4 to 7 mm. An example 
of the typical absorption coefficients are shown in Figure 5.6, mostly measured in an 
impedance tube. They found that, for a given sample thickness, the absorption co-
efficient increases when the diameter of the grains decrease.

The behaviour of granular materials is different from fibrous ones such as mineral 
wool, because grains pack together differently, usually resulting in a lower porosity 
for granular materials in comparison to fibrous ones. The absorption varies more with 
frequency for granular materials than for fibrous absorbents as shown in Figure 5.6 
in comparison to Figures 5.2 and 5.3. There is a critical thickness for the granular 
material, beyond which additional depth does not increase absorption. The broadband 
absorption for thick samples of the granular material shown in Figure 5.6 is limited to 
around 0.8, whereas with fibrous absorbent, the value can rise to unity. Consequently, 
fibrous materials often give better acoustic absorption, but the recycled granular 
materials might be favoured for other reasons, such as sustainability. The performance 
of the recycled granular absorbent can be improved by forming wedges rather than flat 
boards. Also included in Figure 5.6 is a prediction of the absorption coefficient using a 
complicated porous absorber model showing that good results from such theories can 
be obtained; a similar theory is outlined later in this chapter.

In developing an environmentally friendly or sustainable absorbent, many issues 
have to be considered. It is preferable for the whole life cycle of the product to be 
considered. Products made from recyclable materials are welcomed, but issues such 
as energy consumption during manufacture and the environmental impact of binders 
need to be considered. Another issue is whether the product is recyclable at the end 
of its life. An example of product that achieves this is Reapor™,12 which is a non-
combustible inorganic foam. A combination of heat processes and sintering is applied 
to glass, much of it recycled waste, to form a granular absorbent where even the grains 
themselves contain small pores. Figure 5.7 shows the pore structure for the material 
measured using an electron microscope and also displays the absorption coefficients. 
The material is fibre-free, rugged, non-combustible, moisture resistant, and can be used 
indoors or outdoors.
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Around the world various competing rating systems have been developed to en-
courage buildings which minimize environmental impact. An example of such a scheme 
in the US is the Leadership in Energy and Environmental Design (LEED®) rating system 
developed by the United States Green Building Council.13 This lists detailed criteria 
against which building projects should be rated to gain accreditation. Relevant to 
acoustic materials, the system deals with issues such as recycled content, woods from 
certified sources and low-emitting paints and coatings. Four levels of LEED certification 
are available: Platinum (52–69 credits), Gold (39–51 credits), Silver (33–38 credits) 
and Certified (26–32 credits). To qualify under one of these four designations buildings 
must satisfy all of the LEED prerequisites, such as Elimination and Control of Asbestos, 
Smoking Ban, etc., then go on to earn a certain number of credits. The 69 credits are 
grouped into 6 areas: Sustainable Sites; Water Efficiency; Energy and Atmosphere; 
Materials and Resources; Indoor Environmental Quality, and Innovation and Design 
Processes.

5.2.4 Curtains (drapes)

Curtains or drapes are essentially porous absorbers. Most of the time, the deeper the 
folds, the greater the absorption,14 as this means there is more resistive material and 
the absorbent is further from the rigid backing where the particle velocity is greater. 
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Figure 5.7 Top: pore structure for PhoneSTOP, an inorganic foam Reapor, showing double 
porosity. Bottom: random incidence absorption coefficient for:

  Reapor; and
  the material coated to form an acoustic plaster system (photo and data 

courtesy of Henkel KGaA).
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This is illustrated in Figure 5.8, where the same curtain is hung with different fullness. 
It is also possible to increase the absorption by hanging the curtain away from the 
rigid surface and so placing the resistive material where the particle velocity is higher, 
and hence producing more absorption. Increasing the density of the material generally 
increases the absorption produced,15 as shown in Figure 5.9. Appendix A gives further 
data showing that the absorption coefficient varies greatly depending on the type of 
curtain and mounting.

5.2.5 Carpets

If present, carpet usually contributes a large proportion of the high frequency absorption 
present in a room. The amount of absorption created depends on the type of carpet 
and also the underlay used.14,16 Essentially, the carpet is a porous absorber, and so 
it has little absorption at low frequencies, but causes significant attenuation at high 
frequencies. If the underlay is open celled, then its presence increases the thickness of 
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Figure 5.8 Curtain (drape) absorption with different fullness of draping (data from Harris14).
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the porous absorbent, and so increases the absorption. Some underlay types are open 
celled, such as old-fashioned felt hair and foam rubber. Sponge rubber, however, can 
be open or closed cell. The absorption generated is also very dependent on the type of 
carpet, for instance the way the pile is constructed. Appendix A gives a large number of 
absorption coefficients for different carpet types taken from literature. Everest notes16 
that the absorption coefficients reported for carpet vary quite considerably between 
different publications. This is illustrated in Figure 5.10, where minimum, mean and 
maximum absorption coefficients in the literature are shown. This emphasizes the need 
for measurement of the carpet to be used, rather than assuming that an average value 
from the literature will be accurate.

5.2.6 Acoustic plaster

Architects more often than not prefer their acoustic treatment to be hidden and cer-
tainly not defining the visual aesthetic. Consequently, an absorptive, smooth, seamless 
and durable plastered finish is useful in satisfying the aesthetic requirements of 
architects and interior designers. There are currently several approaches to achieving 
a seamless appearance which looks like plaster. However, current products are not 
really absorbent plasters in that they all involve an absorptive substrate, whether it be 
mineral wool or a non-combustible inorganic blown-glass granulate (2–4 mm grain 
size), and a surface layer which looks like plaster and is as acoustically transparent as 
possible. This surface layer is typically composed of some aggregate, such as marble 
particles, glass granulate and cotton, with a binder that allows the pores between the 
aggregate to remain open when the binder dries. The installation of seamless areas 
is possible up to a maximum of 200 m2. The maximum length or width should not 
exceed about 15 m. Expansion joints are mandatory for larger areas and intersecting 
boundary surfaces to avoid cracking.

All of these systems are applied on-site. To ensure that a seamless surface is achieved 
with a perfect optical finish, it is necessary to start with a ceiling that is perfectly level and 
clean by projecting a light across its surface. Once the absorptive substrate panels are 
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Figure 5.10 The minimum, mean and maximum values for carpet absorption from the 
literature.
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glued or mechanically attached to the surface and levelled, the seams between the panels 
must be filled and sanded smooth. Next, depending on the desired smoothness of the 
finish, one or more surface layers of the plaster-like coating are applied. When the 
porous substrate is mineral wool and a smooth surface is desired, typically a base coat 
is hand applied or sprayed on, hand trowelled and sanded, followed by a finish coat 
which is applied and meticulously hand trowelled. If the final finish can be rougher, 
then a fine layer of the final coat may be sprayed on. When the absorptive substrate 
is blown glass granulate, the seam fill process is followed by several thin sprayed on 
coats of base, undercoat and finish coat with the desired degree of smoothness. Some 
sanding may be required to remove rough areas prior to the final coat. As is probably 
apparent from this description, the main disadvantage of this system is that they are 
slow to apply. The final acoustical performance is also dependent on the skill of the 
applicator to a certain extent.

A typical mineral wool substrate system, with a succession of acoustically transparent 
layers with the granule size decreasing with each layer, is shown in Figure 5.11. The 
top layer granules are so small that they provide the appearance of a smooth, seamless 
conventional gypsum-plastered surface. In fact, the top layer does seal the surface a 
little and acts as a thin membrane. As might be expected, this produces additional low 
frequency absorption, but at the cost of a little loss of absorption at high frequencies, 
in comparison to the mineral wool alone. The absorption coefficient for another 
acoustic plaster system is given in Figure 5.7, which shows how the top layer affects 
the absorption produced.

5.2.7 Coustone

Porous absorbers tend to be soft and prone to damage, for instance most do not 
survive repeated soakings. There is a need for a material which provides absorption 
and allows washing. Such an absorbent is Coustone. The ability to be washed means 
that Coustone can be used in places such as swimming centres, police interview rooms 
and firing ranges. The absorbent is a rigid, hard wearing material with a granulated 

Figure 5.11 A proprietary system for achieving a flat porous plaster. The right sample 
shows the different layers of plaster which are used. (Photo courtesy of BASWA 
acoustic AG.)
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surface. It is constructed from bonded flint in such a way as to keep the structure open 
and so allow absorption. It is heavy so it can also provide good sound insulation, but 
the weight also means that it can be expensive to use.

The material is formed by bonding flint aggregate together with a resin. Flint ag-
gregate around a millimetre in size has a particular shape that means when bonded 
together with the right resin it forms an open pore structure. The cavities formed are 
of the order of millimetres in size. Furthermore, the pores are very irregularly shaped 
and joined; consequently the tortuosity is high. (Tortuosity, as the name suggests, is a 
measure of how tortuous the air paths are within the absorbent, and this influences 
the amount of absorption produced.) The high tortuosity is key to the high absorption; 
other aggregates form different pore shapes which absorb less efficiently. The resin must 
have the right properties. It must not fill the cavities, yet be strong enough to hold the 
absorber together. The resin is also elastic, and so the material can also offer a degree 
of vibration isolation.

Figure 5.12 shows typical absorption coefficients under different conditions. The 
material behaves like a porous absorber. Consequently, it can be spaced from walls to 
produce additional absorption by moving it away from where the particle velocity is 
low. It can also be backed by mineral wool to provide additional absorption at a lower 
cost and with less weight.

5.2.8 Aerogels

Aerogels are highly porous solids formed from a gel in which the liquid is replaced 
with a gas. They have very high porosities, being 95 per cent air, and so can be used 
as porous absorbents. Unfortunately, the lightest aerogels are rather fragile, and the 
denser ones are less suitable as acoustic absorbents because they do not have a suitable 
flow resistivity. However, it is possible to use them in a granular form,17 and provided 
layers are built up to provide impedance matching to an incident wave, good absorption 
can be obtained.
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5.2.9 Activated carbon

Granular adsorbents (as opposed to absorbents), such as activated carbon, appear 
to have interesting acoustic properties. There are some experimental indications that 
adsorbent material can be used to enhance the compliance of acoustic enclosures.18 
Indeed, a loudspeaker manufacturer has exploited this property to enhance the low 
frequency performance of loudspeakers. Recent measurements show that, at low 
frequencies, a layer of activated carbon provides much stronger sound attenuation than 
other porous absorbers. For instance, Figure 5.13 shows the absorption coefficient for 
an activated carbon sample measured in an impedance tube compared to a sample of 
sand. The hypothesis is that adsorption and desorption are responsible for the excess 
sound attenuation of activated carbon.

Gas adsorption is a process whereby gas molecules adhere to a surface due to the Van 
der Waals potential. Adsorbed molecules form a film on the surface of the carbon with 
a thickness of one or several molecular layers. If the gas pressure increases, as happens 
in sound wave compressions, then the number of adsorbed molecules increases. 
Desorption is the opposite process, whereby the molecules leave the surface and return 
to the surrounding atmosphere, and this happens during sound wave rarefactions. 
This cycle of adsorption and desorption requires energy, which comes from the sound 
wave, and hence acoustic attenuation occurs. Because the density of the gas is being 
changed by the adsorption and desorption processes, if the activated carbon is placed 
in an enclosure, the compliance of the space changes.

To make this adsorption process effective, it is necessary to have a structure with two 
scales of porosity – large pores are needed to allow sound to enter the material, and 
much smaller pores are needed to facilitate the adsorption process. This is achieved by 
activated carbon. Because the adsorption process takes time to happen, the enhanced 
acoustic performance is only seen at low frequencies, as this gives sufficient time 
between the compression and rarefaction cycles.

Figure 5.13 The low frequency absorption coefficient of:
  activated carbon, and
  sand. Normal incidence measured in impedance tube.
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5.2.10 Ground

When sound propagates outdoors from a source, a decrease in sound pressure level 
at low frequencies is often measured. This dip is due to the interference between the 
direct sound straight from source to receiver and the reflection from the ground. This 
is known as the ‘ground effect’. What frequency this dip occurs at depends on the 
positions of the source and receivers relative to themselves and the ground, as well 
as the acoustic properties of the ground itself. The calculation of the frequency and 
depth of the ground effect is enshrined in many guides and standards for calculating 
environmental noise.4 What is of interest here, however, is just the behaviour of the 
ground as an absorber.

The surface impedance of earth is significantly altered by the soil/earth composition, 
roughness, degree of compaction and moisture content. For instance, cultivated 
farmland offers significant decreases in A-weighted sound pressure levels for broadband 
sources in comparison to grassland, if subsoiling, discing and ploughing change the 
flow resistivity of the surface and the variation of the soil properties with depth. In 
addition, ploughing can result in periodic surface roughness which leads to a diffraction 
effect which can further attenuate sound. Attenborough et al.19 showed that ploughed 
ground can produce up to 10 dB greater attenuation (A-weighted) for a broadband 
sound at 50 m range than would be expected from ‘ISO-soft’ ground. But whatever 
the surface texture and geometry, earth is normally modelled as a porous absorber, so 
Section 5.5.3 specifically details the application of empirical models to the ground.

5.3 Basic material properties

The rest of this chapter is devoted to the mathematical modelling of porous absorbents; 
given a particular material, how can the surface impedance and absorption coefficient 
be estimated? The mathematical models also give insight into how absorption is 
produced, and enable better designs to be produced. But first it is necessary to set 
down the two most important and fundamental quantities that determine the acoustic 
behaviour of sound within porous absorbents, namely flow resistivity and porosity.

5.3.1 Flow resistivity

Flow resistivity is a measure of how easily air can enter a porous absorber and the 
resistance that air flow meets through a structure. It therefore gives some sense of how 
much sound energy may be lost due to boundary layer effects within the material. A 
slice of the porous material of thickness d is subject to a mean steady flow velocity U. 
It is assumed that the flow velocity is small. The pressure drop ΔP is measured. From 
these quantities the flow resistivity σ is defined as:

 (5.1)

The flow resistance σs is defined as:

 (5.2)

Ud
P=

d
U
P

s ==
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The flow resistivity is effectively the resistance per unit material thickness. If the flow 
velocity is not small, then non-linear factors must be considered. For instance, the 
flow resistivity formulations quoted below will break down for high pressure sound 
waves, say when the sound pressure level exceeds 140 dB. Chapter 3 details how flow 
resistivity is measured. It is important to check the units used with flow resistance and 
resistivity as two systems have been in use. The unit of flow resistance in MKS units is 
Nm–3s, often referred to as one rayl, and should nowadays be used. Older texts may 
use CGS rayls. To convert a CGS rayl to a MKS rayl, multiply by 10.

The flow resistivity is one of the most important parameters determining the absorp-
tion properties of a porous absorber – if not the most important. It is the parameter 
that varies most between common porous absorbent materials, and so is the most 
important to determine.

There are several empirical and semi-empirical formulations in the literature that 
can be used to estimate the flow resistivity. For fibreglass, the following empirical 
relationship derived by Bies and Hansen can be used:4,20

 (5.3)

where a is the fibre radius and ρm is the bulk density of the absorbent. For mineral 
and glass fibre, diameters are typically 1–10 μm. Bies and Hansen showed that fibrous 
materials have an approximately linear relationship between flow resistivity and 
density, but this is not necessarily true for foam. For fibrous materials, Bies and Hansen 
measured samples with resistivity values ranging from 2,000 to 200,000 rayls m–1, and 
for one type of foam with flow resistivity between 2,000 and 40,000 rayls m–1.

A number of other empirical relationships have been reported which deal with 
different materials, such as granular materials, and larger fibre sizes. These are sum-
marized in Table 5.1. Flow resistivity values for the ground can be found later in 
the chapter in Table 5.4. Formulations to predict the effect of extreme heat on the 
properties of fibrous porous absorbers can be found in Reference 21; as the temperature 
increases, so does the flow resistivity. A simple formulation to allow for this is:

 (5.4)

where T is the temperature in °C and σ(20) the flow resistivity at 20°C. When using 
this with later formulations for impedance, it is necessary to also adjust the speed of 
sound and gas density for temperature:

 (5.5)
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Table 5.1 Various empirical relationships for flow resistivity. From References 5, 9, 22, 23, 67, 68, 69

Material Formulation
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6 ≤ 2a ≤ 39 μm
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Sheep wool
22 ≤ 2a ≤ 35 μm
13 ≤ ρm ≤ 90 kgm–3.

a
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Wood materials with short fibres
2a ≈ 30 μm

57.18.20 m=

Loose granular material HD
HH μ)1)(1(400 52 +=
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Consolidated granular material ( ) 96.0)(log83.1log 1010 = D

Notes: η is the viscosity of air (1.84 × 10–5 poiseuille) and ε the porosity; ε =ρm/ρf where ρf is the density of 
the fibres or the grain material and ρm the bulk density of the material. D is the characteristic particle 
dimension: D2 = Vg/0.5233 where Vg is the number of the particles in a unit volume.
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For thin materials which are used to cover porous absorbers it is better to define the 
properties in terms of the flow resistance. Wire, glass fibre and more normal cloths can 
be produced with a wide variety of resistance values.

5.3.2 Porosity

Porosity gives the fractional amount of air volume within the absorbent. It is a ratio 
of the total pore volume to the total volume of the absorbent. Good absorbers tend to 
have high porosity, for example most mineral wools have a porosity of about 0.98, but 
in designing an absorber, it is possible to trade off porosity against flow resistivity (and 
to a lesser degree the structural factors outlined later). When determining the porosity, 
closed pores should not be included in the total pore volume as these are relatively 

inaccessible to sound waves (closed pores are most commonly found in foams, even 
ones designed to be open celled). The porosity is a key parameter, but for commonly 
used bulk absorbing materials, the value of porosity does not vary greatly and is close 
to unity. Table 5.2 gives some typical porosity values. Porosity values for the ground 
can be found later in the chapter in Table 5.4.

5.4 Modelling propagation within porous absorbents

Modelling the propagation of sound within a porous absorbent is difficult. Two ap-
proaches are found to be most useful. The first is a completely empirical approach 
as exemplified by Delany and Bazley. They measured a large number of samples of 
porous material and used curve fitting to arrive at relationships describing how the 

Table 5.2 Typical porosity values for some materials from References 1, 5, 24, 45, 68, 70

Material Typical porosities

Mineral wool 0.92–0.99
Reticulated vitreous carbon 0.91–0.97
Open cell acoustic foams 0.95–0.995
Felts 0.83–0.95
Wood fibre board 0.65–0.80
Vermiculite (granular) ≈0.65–68
Wood wool board 0.50–0.65
Perlite (granular) 0.60–0.78
Porous render 0.60–0.65
Pumice concrete 0.25–0.50
Rubber crumb 0.44, 0.54
Coustone 0.4
Glass beads (1.6 mm and 0.7 mm) 0.34, 0.38
Gravel and stone chip fill 0.25–0.45
Ceramic filters 0.33–0.42
Brick 0.25–0.30
Open porous asphalt 0.18–0.20
Sinter metal 0.10–0.25
Firebrick 0.15–0.35
Sandstone 0.02–0.06
Marble ≈0.005
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characteristic impedance and propagation wavenumber vary with flow resistivity. 
When applied to an existing material type, this empirical technique is the simplest to 
apply and can be most effective. It is detailed in the next section.

A second approach to modelling porous absorbent is to formulate the problem using 
a semi-analytical approach. For instance, the propagation within the pores can be 
modelled semi-analytically by working on a microscopic scale. This approach results 
in complicated theoretical models, of which there are several variants in the literature. 
This approach is not for the faint hearted, and runs into difficulty because it is not 
possible to analytically derive all the necessary parameters within the models for most 
porous absorbents. In particular, factors related to the pore shapes are difficult to 
obtain except empirically. Consequently, the verification of the accuracy of the model 
is rather circular as measurements are needed to tune the model, and then the same 
measurements are sometimes used to show that the theory worked! This is not very 
satisfactory. Nevertheless, it is this type of modelling which holds the best chance of 
enabling the development of new porous absorbers to be undertaken without resorting 
to a completely experimental approach. Section 5.4.2 details some of the additional 
material properties that are needed in this approach, and Section 5.4.3 gives details of 
some of the models for rigid-framed materials.

Readers looking for a simple solution to porous absorber modelling are advised to 
read Section 5.4.1 and to use an empirical approach, before skipping to Section 5.5 to see 
how these empirical models can be applied to predict the absorption of absorbent layers.

5.4.1 Macroscopic empirical models such as Delany and Bazley

When predicting the absorption of porous absorbents it is necessary to know the 
characteristics of the material in terms of the characteristic impedance and (complex) 
wavenumber. These empirical models take a macroscopic view of the propagation, as 
the details of propagation through every pore are not considered, and the impedance 
and wavenumber are found empirically. For fibrous absorbent materials, Delany and 
Bazley25 undertook a large number of impedance tube measurements and derived 
empirical relationships relating the impedance and wavenumber to the flow resistivity. 
These relationships are widely used as they give reasonable estimations across quite a 
wide frequency range.

The characteristic impedance, zc, is given by:

 
(5.7)

and the wavenumber, k, by:

 (5.8)

where ρ0 and c0 are the density and speed of sound in air, and ω is angular frequency. 
X is given by:

 (5.9)
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where f is the frequency and σ the flow resistivity of the fibrous material.
A good empirical match was achieved, but there are restrictions on the applicability 

of these formulations. These are only applicable where:

• The porosity, ε, is close to 1, which most purpose built fibrous absorbers 
achieve.

• 0.01 <X <1.0, which means the formulations only work over a defined frequency 
range.

• The limits of the flow resistivity in the measurements were

Figure 5.14 shows a large number of measurements undertaken by Mechel and 
Grundmann (reported in English in Reference 5) which give a visual indication of the 
accuracy of the empirical fit. These graphs show the normalized propagation constant 
k/k0 and normalized characteristic impedance (zn = zc/ρ0c0) for the measurements, 
alongside a thin dashed line giving the Delany and Bazley empirical values. The results 
shown are for glass fibre; similar accuracy is obtained for basalt and rock wool.

It is known that the Delany and Bazley model gives erroneous low frequency be-
haviour,26 as this is outside its range of applicability. But often the absorption is low 
at these frequencies, and so the inaccurate predictions are not so important. However, 
several authors have attempted to produce improved relationships. For instance, 
Mechel and Grundmann produced a more complex set of empirical relationships.5 They 
derive separate empirical relationships for mineral fibre and glass fibre, and this enables 
some improvement over the Delany and Bazley model. For many cases, however, the 

1mraylMKS000,501000 . 

Figure 5.14 Normalized propagation constant and characteristic impedance (zn = zc /ρ0c0) 
for fibreglass. Points show measured data; the dashed line the Delany and 
Bazley approximation; and the solid line a running mean (after Mechel5).
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difference in the predicted quantities is relatively small. Figure 5.14 shows the floating 
average for the Mechel and Grundmann measurements, which is presumably close to 
their empirical predictions, compared to the measurements and the Delany and Bazley 
predictions.

The Mechel and Grundmann empirical can be most simply given as:

 (5.10)

The coefficients are given in Table 5.3. The range of applicability is 0.003 <X <0.4.
Other authors have also produced their own empirical models to update and improve 
on the Delany and Bazley model,27 especially to expand the applicability to other 
materials such as polyurethane28–30 and reticulated carbon70 foams, other fibrous 
materials22 and granular material.68

The ground is often modelled as a porous absorber. The Delany and Bazley empirical 
model has been used quite extensively to obtain the characteristic impedance and 
wavenumber, even though these formulations were developed for use with fibre 
glass rather than loose granular material. For this, flow resistivity values for typical 
ground surfaces are needed, and Table 5.4 gives appropriate values. While the Delany 
and Bazley model works reasonably well above about 250 Hz, at lower frequencies 
the characteristic impedance and wavenumber have significant errors resulting in 
inaccurate predictions of excess attenuations.31

Section 5.5 details how these empirical formulations can be used to get the surface 
impedance and absorption coefficient of a material.

The problem with these macroscopic empirical models is they do not readily give 
information about how the microscopic properties of the porous absorber, such as 
the pore size and orientation of the pores affect the absorption produced. This means 
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Table 5.3 Coefficients for Mechel and Grundmann empirical model of porous absorbers5

Mineral fibre (basalt or rock wool)

Coefficients -jk/k0 zn

β-1 –0.003 557 57 – j 0.000 016 489 7 0.0026786 + j 0.003 857 61
β–1/2 0.421 329 + j 0.342 011 0.135 298 – j 0.394 160
β0 –0.507 733 + j 0.086 655 0.946 702 + j 1.476 53
β1/2 –0.142 339 + j 1.259 86 –1.452 02 – j 4.562 33
β1 1.290 48 – j 0.082 0811 4.031 71 + j 7.560 31
β3/2 –0.771 857 – j 0.668 050 –2.869 93 – j 4.904 37

Glass fibre

β-1 –0.004 518 36 + j 0.000 541 333 –0.001 713 87 + j 0.001 194 89
β-1/2 0.421 987+j 0.376 270 0.283 876 – j 0.292 168
β0 –0.383809 – j 0.353 780 –0.463 860 + j 0.188 081
β1/2 –0.610 867 + j 2.599 22 3.127 36 + j 0.941 600
β1 1.133 41 – j 1.74819 –2.109 2 0 – j 1.323 98
β3/2 0 0



Table 5.4 Effective flow resistivity values for ground surfaces and other parameters (data 
from References 35–38, 71, 72, 73)

Surface

Effective flow 
resistivity
(MKS rayls m–1)

Water 
content 
(%) Porosity

Porosity 
decay
κ
(m–1)

Dry snow, newly fallen 0.1 m over 
about 0.4 m older snow

1 × 104 – 3 × 104 – – –

Sugar snow 2.5 × 104 – 5 × 104 – – –
In forest, pine or hemlock 2 × 104 – 8 × 104 – – –
Grass, rough pasture, airport, public 
buildings etc.

15 × 104 – 30 × 104 – – –

Roadside dirt, ill-defined, small rocks 
up to 0.1 m mesh

30 × 104 – 80 × 104 – – –

Sandy silt, hard packed by vehicles 80 × 104 – 250 × 104 – – –
‘Clean’ limestone chops, thick layer 
(1–2.5 cm mesh)

1 × 106 – 4 × 106 – – –

Old dirt roadway, fine stones (5 cm 
mesh) interstices filled

2 × 106 – 4 × 106 – – –

Earth, exposed and rain-packed 4 × 106 – 8 × 106 – – –
Quarry dust fine, very hard-packed by 
vehicles

5 × 106 – 20 × 106 – – –

Asphalt, sealed by dust and light use ≈3 × 107 – – –
Snow (new) 1 × 103 – 1 × 104 – 0.64–0.88 0–3
Snow (old crusted) 8 × 103 – 3 × 104 – 0.5 0–100
Forest floor 7 × 103 – 20 × 104 – – 0–40
Tall crops 4 × 104 – 5 × 104 – – 0
Loose sand or dry cultivated soil 3 × 104 – 3.1 × 105 – 0.36–0.52 0–10
Fine sand 3.1 × 105 – 0.44
Grassland 7 × 104 – 8.5 × 105 – – 0–250
Wet and compacted soil 4 × 107 – – –200 – 0
Coarse sand, pore size 98 µm 5 × 104 0 – –14

1 × 105 11 – –82
4.7 × 105 51 – –141
9 × 104 95 – 1290

Fine sand, pore size 65 µm 1.5 × 105 0 – –28
1.4 × 105 15 – 130
1.5 × 105 48 – 620
4.1 × 104 95 – 1130

Mineral layer beneath mixed 
deciduous forest

(540 ± 92) × 103 15 36.5 –

Loamy sand (420 ± 17) × 103 11.2 37.5 –
Bare sandy plain (370 ± 110) × 103 9.3 26.9 –
Humus on pine forest floor (230 ± 220) × 103 16.1 58.1 –
Grass root layer in loamy sand (150 ± 90) × 103 – 48 ± 4 –
Litter layer on mixed deciduous forest 
floor (2–5 cm thick)

(30 ± 30) × 103 – – –

Pine forest litter (6–7 cm thick) (9 ± 5) × 103 28.6 38.9 –
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that it is difficult to use this empirical approach to inform design, beyond finding the 
optimum flow resistivity required. To improve designs, more detailed models of the 
propagation are required. In the next section some of the key parameters needed for 
more physically based porous absorber models are discussed. Following on from this, 
some of these more complex models are presented.

5.4.2 Further material properties

The simplest theoretical models of porous absorbers assume that the material (or 
frame) of the absorbent is rigid. Then it is possible to apply some classical theories 
of sound propagation in small pores. It is only possible to gain analytical solutions 
for simple geometries such as bundles of cylindrical pores. Unfortunately, cylindrical 
pores are far removed from the complex geometry of the vast majority of porous 
absorbers. Consequently, a semi-empirical approach is often adopted, where a mixture 
of experiment and theory determines key properties of the material. The necessary 
parameters are detailed below; they are not independent.

5.4.2.1 Pore shape factor and characteristic lengths

While the porosity and the flow resistivity are usually the most important parameters 
in determining the sound absorption, other secondary parameters such as the shape 
factor and the tortuosity (see next section) can be important. The shape of the pores 
influences the sound propagation and hence the absorption. Different pore shapes 
have different surface areas and hence have different thermal and viscous effects. 
Analytically obtaining the shape factor for most porous absorbents is impossible as 
they do not usually conform to simple geometric shapes. Consequently, the pore shape 
factors are usually empirically found by best fitting the acoustic measurements of the 
effective density and bulk modulus of the material. The shape factors are therefore 
dependent on the model being used to predict the propagation within the absorbent. 
Later in this chapter, formulations for the effective density and bulk modulus are found, 
from which the characteristic impedance and wavenumber can be obtained; for now, 
the important shape factors (Λ and Λ′) used in those formulations are defined. These 
factors are sometimes prefixed with the term ‘dynamic’ to emphasis that they apply to 
the dynamic, not static, case.

The characteristic length Λ is a weighted ratio of the volume to surface area of the 
pores. It is weighted according to the squared modulus of the microscopic velocity 
evaluated, including the effects of viscosity. It can be found for simple pore shapes 
using the following formulation:

 (5.11)

where s is a constant. For most porous absorbers, s lies between 0.3 and 3. s is 1, 1.07, 
1.14 for circular, square and triangular pores respectively, and 0.78 for slits. ks is the 
tortuosity as defined in the following section, and η is the viscosity of air.

For materials with non-cylindrical pores and complicated internal structures, it is 
necessary to use another characteristic length.32 The effective density of real porous 
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absorbers tends to be determined by parts of the pores with smaller cross-sections, 
whereas the bulk modulus is more determined by larger cross-sectional areas.33 For 
this reason, a second characteristic length to supplement Λ is needed. The second 
characteristic length Λ′ is given by:

 (5.12)

where Sp and Vp are the surface area and volume of the pores respectively. This is the 
same ratio as used for Λ but without the weighting for microscopic velocity. Cylindrical 
pores are a special case where Λ = Λ′. In general Λ′ ≥ Λ, and to a first approximation Λ′ 
= 2Λ and s = 1 can be used in Equations 5.11 and 5.12 to derive simpler formulations 
for the sound propagation in rigid framed fibrous materials.30

The determination of these characteristic lengths poses a problem in the use of 
the theoretical models. For most absorbers, the pore shape is so complex that the 
characteristic lengths must be fitted from empirical measurements on samples, as 
detailed in Section 3.6, which in a sense defeats the point of theoretical modelling, 
because it is impossible to accurately predict the absorption from a material before it is 
built. Further complications arise when the material is anisotropic, which is common in 
many materials. For instance, mineral wool is often laid down in layers, in these cases 
the characteristic lengths depend on the incident angle of the sound wave. Chapter 3 
gives some measurement techniques for the characteristic lengths and Table 5.5 some 
typical values.

5.4.2.2 Tortuosity

The orientation of the pores relative to the incident sound field has an effect on the 
sound propagation. This effect35 is represented by the parameter tortuosity, denoted ks. 
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Table 5.5 Various characteristic length values from References 26 and 34–46

 Characteristic length (µm)

Material Viscous Λ Thermal Λ′

Melamine foam 160 290
Plastic foam
Polyurethane

25 & 230
200

70 & 690
370

Metal foam 20 –
Porous aluminium 770 –
Fibreglass 60–180 125–400
Polyester fibres 50–270 100–540

Cellular rubber 9 15
Felt 30 60
Glass beads, 0.1 mm diameter 90 180
2.1 mm lead shot 280 490
4 mm lead shot 550 830
9 mm gravel 190 –
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Some authors use the term structural form factor for this property, and there are some 
differences in definition in the literature. Using tortuosity has the advantage that the 
term is almost self-explanatory. The more complex the propagation path through 
the material, the higher is the absorption, and the complexity of the path is partly 
represented by the tortuosity. Furthermore, the tortuosity affects how easily sound can 
penetrate the material. For simple cylindrical pores, all aligned in the same direction, the 
tortuosity is simply related to the angle between the pores and the incident sound (ks = 
1/cos2(ψ)). Formulations also exist for packed spheres. An empirical formulation is:36

 (5.13)

An alternative expression is:37

 (5.14)

Real absorbents, however, are not normally that well ordered. Consequently, tortuosity 
needs to be measured. Techniques for doing this are discussed in Chapter 3. Some values 
are given in Table 5.6. Another approach is to calculate the tortuosity from the structure 
of the material at a microscopic scale. For instance, Koponen et al.38 used a lattice-gas 
cellular automaton method to examine the tortuosity of a 2D lattice.

1=sk

2
11 +=sk

Table 5.6 Various tortuosity values from References 26, 35, 41–46, 39, 52 and 58 

Material Tortuosity

Fibrous materials e.g. rock wool 1–1.06
Polyester, hemp fibres 1.01–1.05
Plastic foam 1.06 & 1.7
Melamine foam 1.01
Polyurethane foam 1.08–1.41
Metal foam 1.27
Porous aluminium 1.05
Snow (new) 1.5–2.7
Snow (old crusted) 4
Loose sand or dry cultivated soil 1.27–3.32
Granular materials 1.1–1.8
Gravel 1.5–1.8
Glass beads, 0.1 mm diameter 1.87
2.1 mm diameter lead shot 1.56–1.72
4 mm diameter lead shot 1.46
Fused glass bead sample 1.75–3.84
Vermiculite 1.8–2.46
Perlite 1.17–2.22
Nitrile foam granulate 1.49
Open porous asphalt 3.2–15
Rubber crumb 1.38–1.56
Cellular rubber 2.64
Felt 1.01
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5.4.3 Phenomenological theoretical models

Given the material properties (flow resistivity, porosity, tortuosity and characteristic 
lengths), it is possible to calculate the characteristic impedance and propagation wave-
number by considering the microscopic propagation within the pores. Attenborough40 
produced a useful review of early methods, but these techniques have been much refined 
in recent years. Many people have been involved in the development of the models, the 
description below draws on the work by Johnson et al.41 as summarized by Allard42 
and Allard and Champoux.30 This is a simple phenomenological model. The absorber 
frame is assumed to be rigid.

The effective density of the porous material is given by:

 
(5.15)

The effective or dynamic bulk modulus of the air in the material is given by:

 (5.16)

where γ is the ratio of the specific heat capacities (≈1.4), P0 is atmospheric pressure 
≈101,320 Nm–2 and Np is the Prandtl number given by:

 (5.17)

where δv and δh are the size of the viscous and thermal boundary layers. At 1 atmos-
phere and 20°C the Prandtl number is about 0.77; this can be found from the following 
formulations. The thickness of the viscous boundary layer is given by:

 (5.18)

Typically the viscous boundary layer is sub-millimetre in size, for example at 100 Hz 
it is ≈0.2 mm.

The thickness of the thermal boundary layer is given by:

 (5.19)

where κ ≈ 2.41 x 10–2 WmK–1 is the thermal conductivity of air and cp ≈ 1.01 Jkg–1K–1 
is the specific heat capacity of air at constant pressure.
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Once the effective density and bulk modulus have been determined from Equations 
5.15 and 5.16, it is then possible to calculate the characteristic impedance and propa-
gation wavenumber for the porous absorber, which are more often used in calculating 
acoustic properties.

The characteristic impedance zc is given by:

 
(5.20)eec Kz =

Figure 5.15 Two models for the normalized characteristic impedance (zc /ρ0c0) of a porous 
absorber. The x-axis is X = ρ0f/σ.

  Re (Delany and Bazley);
  Re (Phenomenological);
  –Im (Delany and Bazley); and
  –Im (Phenomenological).
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Figure 5.16 Two models for the normalized wavenumber (k/k0, where k0 is the wavenumber 
in air) for sound propagation through a porous absorber compared. The 
x-axis is X = ρ0f/σ.

  Re (Delany and Bazley);
  Re (Phenomenological);
  –Im (Delany and Bazley); and
  –Im (Phenomenological).
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and the propagation wavenumber by:

 (5.21)

The formulations in Equations 5.15 and 5.16 give the correct high and low frequency 
asymptotic behaviour, but is only approximately correct at mid-frequencies for compli-
cated pore geometries.

Figures 5.15–5.17 show the normalized characteristic impedance, propagation con-
stant and absorption coefficient for the model from Equations 5.15 and 5.16; these 
lines are labelled phenomenological. These values are compared to the Delany and 
Bazley formulations of Equations 5.7 and 5.8. The following assumptions were made 
to implement the phenomenological model: ks = 1, Λ′ = Λ, and s = 1. Both models give 
very similar results. As stated previously, the Delany and Bazley predictions are known 
to give inaccurate results at low frequency (the real part of the impedance of the surface 
of the porous absorber actually goes negative), but these are frequencies at which the 
absorption from the porous absorber is relatively small anyway.

The comparison in Figure 5.17 shows the absorption coefficient for a given absorber 
thickness on a rigid backing, rather than the characteristic impedance or wavenumber. 
How the absorption coefficient and surface impedance are calculated from the charac-
teristic impedance and wavenumber is detailed in the next section.

5.4.4 Relaxation model

Wilson43 took an alternative approach to modelling the propagation through porous 
absorbents, viewing the thermal and viscous diffusion as a relaxation processes. When 
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Figure 5.17 Two models for the absorption coefficient of a porous absorber compared. 
The x-axis is X = ρ0f/σ:

  Delany and Bazley; and
  Phenomenological.
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sound propagates through common porous materials, temperature perturbations result 
within the air inside the absorbent which relax over time towards the temperature 
of the frame material. The characteristic time for this thermal relaxation process is 
denoted τt. Similarly, the sound wave sets up pressure gradients that induce changes in 
the flow velocity which also relax towards the steady state by the absorbent’s frame. 
The characteristic time for this viscous relaxation process is denoted, τv. Writing the 
inverse of the bulk modulus and effective density in a relaxational form allows the 
characteristic impedance and wavenumber of the acoustic absorber to be derived in 
terms of the relaxation times and other characteristics of the absorber:56

 
(5.22)

 
(5.23)

With appropriate choice of relaxation times, these formulations give predictions which 
match the empirical and phenomenological models discussed earlier in this chapter. 
For instance, with τv = 2.54/σ and τv = 3.75/σ, the above equations mimic the behaviour 
of the Delany and Bazley empirical formulation. The relaxation times are tuned to fit 
the behaviour of the porous material in the frequency range of interest either based 
on measurement or other prediction models. So for frequency domain modelling, 
this relaxation method does not offer any great advantages over other models. 
However, unlike other models, the formulations governing the relaxation process 
can be transformed into the time domain, and so this approach offers the possibility 
of enabling the modelling of porous absorbers through finite difference time domain 
(FDTD) techniques.44
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5.5 Predicting the surface impedance and absorption 
coefficient of porous absorbers

Once the characteristic impedance and wavenumber for the material are known, it is 
necessary to convert these to the surface impedance and absorption coefficient for a 
particular thickness of the porous material with known boundary conditions. In this 
case, the most flexible way of predicting the surface properties of the porous material 
is to use the transfer matrix method. Consequently, this section starts by discussing 
the general case of propagation in one layer of porous absorber in a multi-layered 
system. Then the specific case of a single layer with a rigid backing will be presented. 
The prediction model can be extended to multiple layers of absorbent, but the most 
common situation is the single layer on a rigid backing.

Figure 5.18 shows the arrangement being considered. Only plane wave propagation 
in the absorbent will be considered, and for now normal incidence only is considered. 
Section 1.5.1 showed how sound behaves when propagating from one medium to 
another. At each interface between the layers, continuity of pressure and particle 
velocity is assumed. This allows a relationship between the pressure and particle 
velocity at the top and bottom of a layer to be produced which is compactly given in 
matrix format:

 

(5.24)

where pxi and uxi are the pressure and particle velocity at the bottom of the i th layer; pxi+1 
and uxi+1 are the pressure and particle velocity at the bottom of the (i + 1)th layer; pli and 
uli are the pressure and particle velocity at the top of the i th layer; di is the thickness of 
the layer; ρi the density of i th layer, and kxi the wavenumber for the i th layer.

This formulation can be applied recursively to successive layers, and it is particularly 
powerful in allowing the calculation of the surface impedance of absorbers, rather than 
simply a way of gaining specific values for pressure and velocity at the layer boundaries. 
If the bottom of layer i has an impedance of zsi, and the layer i has a characteristic 
impedance zi, then the impedance at the bottom of the i + 1 layer is:

 (5.25)

This formulation can be applied repeatedly to calculate the surface impedance of a 
multi-layered absorbent. Next a simple case is considered.

5.5.1 Single layer porous absorber with rigid backing

Consider a single layer of absorbent with a rigid backing. The impedance at the surface 
of layer zero, zs0, which is the backing, is taken to be infinite. Then Equation 5.25 
simplifies and gives the impedance on the surface of the absorbent as:
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 (5.26)

This can then be turned into absorption coefficients using Equations 1.21 and 1.24. 
Figure 5.19 shows the impedance changes as the thickness of the layer increases, using 
the Delany and Bazley empirical formulations for the porous material properties. As 
discussed previously, as the porous layer increases in thickness the absorption increases 
at low frequency as expected. Scripts 5.1–5.3 in Appendix B demonstrate the use of 
these equations.

It is also possible to demonstrate the usefulness of air gaps in increasing absorption. 
Consider two cases: 2.5 cm of porous absorber mounted on a rigid backing; and 
1.25 cm of the same porous absorber mounted in front of a rigid backing with a 
1.25 cm air gap. In the former case Equation 5.26 can be used as before. In the latter 
case, Equation 5.25 is applied first to the air layer, and second to the porous absorber 
layer. For the air layer (layer 1):

 
(5.27)

and for the porous absorbent layer (layer 2):

 (5.28)

Figure 5.20 compares the absorption coefficients for the two configurations. It shows 
that the absorbent with the air gap has very similar performance to the thicker ab-
sorption alone. This confirms the usefulness of air gaps, as discussed in Section 5.1 
and elsewhere.

5.5.2 Modelling covers

Often an absorbent is finished with a thin porous layer to make the absorber look better 
or more robust. If the porous surface layer is not free to vibrate then the resistance 
of the covering material should be added to the impedance predicted from the above 
formulations, such as Equation 5.26. If the covering material can vibrate then the effect 
of the moving mass can become significant. The following impedance should be added 
to the surface impedance to allow for this:

 (5.29)

where ρs is the mass per unit area and rs the resistance of the covering material. When 
the covering is not porous, and the resistance large, this formulation simply adds the 
mass of the vibrating material.

5.5.3 Ground

A transfer matrix approach can be applied to the ground once the characteristic 
impedance and wavenumber have been determined. For surfaces such as grassland, 
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assumptions about the layering of the soil and the backing impedance conditions need 
to be made – what are especially important are the characteristics for the first few 
centimetres of depth. For many surfaces it is appropriate to assume a hard backing at 
some appropriate depth, but for others, such as forest floors, it is more appropriate to 
assume a non-hard backing.

More complex models, such as the phenomenological model outlined earlier can be 
used, but Attenborough35 showed that in many cases it is possible to use a simplified 
two parameter model. The normalized surface impedance zn of a single layer of ground 
of thickness d above an acoustically hard backing is approximately given by:

 (5.30)

where zc is the normalized characteristic impedance of the layer; c0 is the speed of sound 
in air; ε is the porosity of the layer; γ is the ratio of specific heats for air; and f is the 
frequency in Hz. If it is assumed that the upper layer has a relatively high effective 
flow resistivity, and the frequency is not too high, then the normalized characteristic 
impedance of the layer is given by:

 (5.31)

where ρ0 is the density of air and σe is the effective flow resistivity given by:

 (5.32)
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where σ is the flow resistivity and sp is a pore shape factor which can be taken to be 0.5 
in many cases, meaning the effective flow resistivity is just the flow resistivity scaled 
by the porosity.

This model can also be used for the case where the deeper soil is more compacted; 
when the substrate has a lower porosity and higher flow resistivity. The change in soil 
properties is modelled as an exponential decrease in porosity with depth. The rate of 
change in porosity with depth is given by κ, and some values for this parameter are 
given in Table 5.4. The normalized surface impedance becomes:

 (5.33)

Figure 5.21 shows predicted and measured surface impedances for ‘institutional’ grass. 
The single parameter model is similar to one using the Delany and Bazley equations, 
and shows inaccuracy at low frequencies, below about 300 Hz. The two parameter 
model, based on the above equations is more accurate.

Horoshenkov and Mohamed37 examined the effects of water saturation on sand in 
the laboratory. They found great changes in the surface impedance with the amount of 
moisture. They also found that the two parameter model of Attenborough was more 
suitable than one based on the Delany and Bazley formulations; the parameters for the 
model they deduced are shown in Table 5.4.

Porous road surfaces have been produced to reduce noise. Changing both the 
road texture and introducing open voids in asphalt is beneficial,45 and reductions 
in A-weighted sound levels of 3 to 5 dB compared to a dense surface have been 
measured.46 However, the pores will gradually become clogged as the surface is used, 
and then the noise reduction is lost. Asphalt consists of mineral grains bound together 
by a bituminous binder. Open porous asphalt uses an appropriate grain size distribution 
to form large voids which do not fill up with binder, although the porosity is rather 
small, typically around 20 per cent. This material can be modelled as a porous absorber. 
Using three parameters, namely porosity, tortuosity and flow resistivity in a relaxation 
or phenomenological model gives sufficient accuracy. Sarradj et al.58 give empirical 
relationships for estimating these parameters from relevant technological parameters 
of the road material.

5.5.4 Multi-layer porous absorbers

By appropriately using layers of different absorbent materials it is possible to gain 
additional absorption from porous absorbers. Ideally, a porous absorbent should offer 
an impedance which matches that of air to remove reflections, while offering high 
internal acoustic attenuation. These two requirements are difficult to achieve in a thin 
layer of a single material, and can be more easily achieved in multi-layered linings. The 
front material has the necessary impedance matching that of air, and the inner layers 
attenuate the sound wave. This is achieved by having layers with the outside layer 
having a low flow resistivity, and the inner layers offering more resistance. Ideally, 
the impedance should only change gradually between internal layers to minimize 
reflections. This arrangement can be modelled by repeated application of the transfer 
matrix equations.47 (An alternative approach to achieving impedance matching is to 
corrugate the front face of the porous absorber.)

f
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An example of multi-layer impedance matching is in flat-walled linings for anechoic 
chambers. Traditionally anechoic chambers use wedges to achieve a gradual change in 
impedance from the air into the absorbent, and so prevent strong reflections from flat 
absorbent areas. The advantage of flat-walled linings is that they are simpler to make 
and install. Xu et al.48 showed that it is possible to use a three-layered flat lining system 
with an overall thickness of about a sixth of a wavelength at the cut-off frequency. 
This is about 80 per cent of the depth normally used for anechoic linings made from 
wedges. A process of trial and error, or an optimization algorithm, can be used to find 
the appropriate materials to use.

5.6 Local and extended reaction

The propagation direction within many porous absorbers is normal to the surface, even 
for oblique incidence sound, because of refraction (see the next section). This means 
that the reaction of the material at any point is independent of the reaction at other 
points. In this case, the surface is termed locally reacting, as the surface impedance 
is independent of the nature of the incident wave. This is an extremely useful first 
order approximation. It means that in multi-layered absorbents the propagation 
can be assumed normal to the surface and are therefore much easier to evaluate. 
These assumptions will break down for large sound pressure levels when non-linear 
propagation is significant. Other common examples of locally reacting materials 
include resonant absorbers whose cavities are partitioned, and massive walls made 
of materials like concrete, where the stiffness effect is small enough to be ignored in 
comparison with the mass effect.

Unfortunately, man-made fibrous materials such as mineral wool often behave as 
an extended reacting surface because it is anisotropic with the material laid down in 
layers. The impedance produced is dependent on the incident wave type and angle 
of incidence. This is one reason why predictions of absorption from the Delany and 
Bazley model, which are based on normal incidence impedance tube measurements, 
are difficult to accurately translate into random incidence values measured in the 
reverberation chamber. A proper model of an extended reacting surface needs to deal 
with the entire wave field inside the medium. While there are formulations that allow 
for the anisotropic behaviour of mineral wool55 (see the next section) these formulations 
produce similar results to the isotropic models because they do not account for the 
extended reaction.

5.7 Oblique incidence

Consider a sound wave in air incident at an angle ψ to a finite layer of porous material 
with a rigid backing. The geometry is shown in Figure 5.22. The wavenumber in air 
is k0, and the wavenumber in the material is k. In vector form these are k0 = {k0,x, k0,y, 
k0,z}, k = {kx, ky, kz}. For simplicity it is assumed that k0,z = kz = 0. Snell’s law relates the 
angles of propagation to the speed of sound in the material, as discussed in Chapter 1. 
In terms of wavenumber this gives:

 
(5.34))sin()sin(0,0 kkkk yy ===
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For many porous absorbents, the differences in wavenumber in air and the absorbent 
are so large that β → 0 and the previous derived normal incident formulae are accurate. 
For cases where β> 0, a different formulation can be derived. As k2 = kx

2 + ky
2 + kz

2, 
this can be combined with Equation 5.34 to give:

 (5.35)

The square root with the positive real part should be chosen. This can then be used to 
form an alternative form of the surface impedance for a rigidly backed absorbent for 
oblique incident sound.

 (5.36)

where zc is the characteristic impedance of the porous absorbent. This is derived using 
Equation 5.24.

Figure 5.4 shows how the attenuation varies with angle of incidence using the Delany 
and Bazley formulations. The surface impedance does not vary much with angle of 
incidence but the reflection coefficient and absorption coefficient vary greatly as the 
pressure component perpendicular to absorbent drops off with a 1/cos(ψ) relationship, 
where ψ is the angle of incidence. This was discussed in Chapter 1.

Fibrous porous absorbents can be anisotropic, in other words their acoustic prop-
erties vary depending on the angle of the wave to the fibre orientation. In this case, 
alternative forms for the surface impedance can be deduced. If the effective densities 
and bulk moduli are measured separately for propagation parallel and perpendicular 
to the fibres, Equation 5.21 can be applied to obtain the wavenumber parallel and 
perpendicular to the fibres. The wavenumber perpendicular to the fibres will be 
denoted kN and parallel to the fibres kp. The porous absorbent is placed so that the 
fibres are parallel to the rigid backing, as is most common; then the component of the 
wavenumber in the x-direction perpendicular to the backing and fibres is given by:55
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Figure 5.22 Geometry for propagation of sound through a finite layer of a rigid-backed 
porous absorber.
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(5.37)

 
(5.38)

 (5.39)

where zN is the characteristic impedance for propagation perpendicular to the fibres.
A method for obtaining the parallel and perpendicular propagation wavenumber and 

characteristic impedance is to use different flow resistivities in the Delany and Bazley 
formulations. Typically the flow resistivity perpendicular σN and parallel σp to the fibres 
are related by a constant factor:49,50

 
(5.40)

where A is a constant with a value of 0.6 or 0.5. When this formulation is used, it 
makes some difference to the absorption coefficient and surface impedance, but the 
change is not that large.

5.8 Biot theory for elastic framed material

In the above theories, the frame of the porous absorber was assumed to be rigid and 
waves only propagated in the air pores. In reality, porous absorbers have elastic frames 
which can support wave propagation. The consequence of this to the absorption 
properties of the material is not as great as might be supposed. For instance, if the 
porous absorber is anchored to a rigid surface, for example attached to the wall or 
resting on a floor, this will constrain the motion of the frame material. For this reason, 
the rigid frame models discussed above are mostly used, and models that allow for 
elastic motion of the frame are less commonly used.

Furthermore, as most of the previous models involve some form of empirical 
fitting, in many cases this fitting can partially compensate for some of the inaccuracies 
introduced by not properly modelling the additional wave types which propagate due 
to the frame being elastic, although strong frame and frame-air resonances cannot be 
well modelled. If the frame of the porous absorber is not constrained, for example 
if it is hanging in free air, then resonances of the frame material can be seen in the 
characteristic impedance of the surface. In this case, a more complete model may be 
required, and most authors favour using Biot theory.51,52 Other models of note are 
presented by Ingard2 and Zwikker and Kosten.53

Biot theory is summarized in more detail in References 5 and 55, where the necessary 
formulations are given. In this book, only the general principles and concepts will be 
discussed along with some indications of the relative accuracy of Biot theory and the 
rigid framed models discussed earlier in the chapter.

The equations of motion for the displacement and strain tensors of the air in the 
pores and the frame are defined. These equations of motion include a set of coefficients 

2

2

1
p

y
Nx k

k
kk =

ykk =)sin(0

)cot(1 dk
k
kjzz x

x

N
Ns =

pN A



192 Porous absorption

which detail the coupling between the air and frame. These coefficients can be identified 
with physical properties such as the bulk modulus of the air in the pores and the elastic 
frame. The former, the bulk modulus of air is taken from the rigid framed theories 
detailed earlier. Once these coefficients are determined, the equations of motion can 
be solved to give the surface impedance of porous layers.

There are now three waves to consider in the structure. There are two com pressional 
waves. In most air saturated porous materials, the coupling between the frame and air 
is negligible and these waves can be identified as the frame-borne and airborne waves. 
Where there is weak coupling, the airborne wave remains mostly within the pores, but 
the frame-borne wave actually propagates through both the frame and pores. The third 
wave, the shear wave is also frame-borne, and in most porous absorbents, is unaffected 
by the fluid air (for normal incidence this is not excited and can be ignored).

Figure 5.23 shows a comparison of theory and experiment from Allard.55 For many 
frequencies the rigid framed model is accurate, but deviations occur around 500 Hz. 
These inaccuracies are due to the resonances of the frame material which by definition 
cannot be predicted by the rigid framed model. This is a dense fibreglass material, 
and so only the quarter wave resonance of the frame is seen. For these frequencies, 
Biot theory offers better predictions, although it should be noted that some fitting of 
prediction parameters had to be undertaken to gain this match. So even with Biot theory 
the rather circular nature of model verification is still a problem.

5.9 Summary

This chapter has described porous absorbers both qualitatively and quantitatively. 
There are a large number of possible porous absorbers, and they form an important 
part of the acoustic palette for acoustic designers both indoors and outdoors. Being 
able to predict the absorption caused by porous materials, and understanding what 
causes the absorption, is important to enable materials to be designed with maximum 
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absorption. In the next chapter, resonant absorbers will be discussed. Since many 
of these use porous absorbers within them, the understanding gained about porous 
absorber modelling from this chapter will be invaluable in the next.

5.10 References
 1 L. Cremer and H. A. Müller, Principles and Applications of Room Acoustics, Applied Science 

Publishers (translated by T. J. Schultz) (1978).
 2 U. Ingard, Notes on Sound Absorption Technology, Noise Control Foundation (1994).
 3 P. D’Antonio, “Nestable sound absorbing foam with reduced area of attachment”, US patent 

5, 665, 943 (1997).
 4 D. A. Bies and C. H. Hansen, Engineering Noise Control: Theory and Practice, E&FN Spon, 

2nd edn, 42–3 (1996).
 5 F. P. Mechel, Formulas of Acoustics, Springer, Section G (2002).
 6 IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, “Man-made 

Vitreous Fibres”, 81 (2002).
 7 R. A. Baan and Y. Grosse, “Man-made mineral (vitreous) fibres: evaluations of cancer 

hazards by the IARC Monographs programme”, Mutation Research, 553, 43–58 (2004).
 8 V. Desarnaulds, E. Costanzo, A. Carvalho and B. Arlaud, “Sustainability of acoustic 

materials and acoustic characterization of sustainable materials”, Proc. 12th ICSV (2005).
 9 K. O. Ballagh, “Acoustical properties of wool”, Appl. Acoust., 48(2), 101–20 (1996).
 10 J. Pfretzschner, “Rubber crumb as granular absorptive acoustic material”, Proc. Forum 

Acusticum, Sevilla, MAT-01-005-IP (2002).
 11 M. J. Swift and K. V. Horoshenkov, “Acoustic properties of recycled granular foams”, Proc. 

Euronoise (2001).
 12 H. V. Fuchs, “Alternative fibreless absorbers – new tools and materials for noise control and 

acoustic comfort”, Acustica, 87, 414–22 (2001).
 13 US Green Building Council, http://www.usgbc.org/, accessed January 2008.
 14 C. M. Harris (ed), Handbook of Noise Control, 2nd edn, McGraw-Hill (1991).
 15 L. L. Beranek, Acoustics, McGraw-Hill (1954).
 16 F. A. Everest, Master Handbook of Acoustics, 4th edn, McGraw-Hill (2001).
 17 L. Forest, V. Gibiat, and A. Hooley, “Impedance matching and acoustic absorption in 

granular layers of silica aerogels”, Journal of Non-Crystalline Solids, 285(1–3), 230–5 
(2001).

 18 J. R. Wright, “The virtual loudspeaker cabinet”, J. Audio Eng. Soc., 51, 244–7 (2003).
 19 K. Attenborough, T. Waters-Fuller, K. M. Li and J. A. Lines, “Acoustical properties of 

Farmland”, J Agric. Engng. Res., 76, 183–95 (2000).
 20 D. A. Bies and C. H. Hansen, “Flow resistance information for acoustical design”, Appl. 

Acoust., 13, 357–91 (1980).
 21 L. L. Beranek and I. L. Vér (eds), Noise and Vibration Control Engineering, John Wiley 

& Sons (1992).
 22 M. Garai and F. Pompoli, “A simple empirical model of polyester fibre materials for 

acoustical applications,” Appl. Acoust. 66(12), 1383–98 (2005).
 23 N. Kino and T. Ueno, “Experimental determination of the micro and macrostructural 

parameters influencing the acoustical performance of fibrous media”, Appl. Acoust., 68, 
1439–58 (2007).

 24 K. V. Horoshenkov and M. J. Swift, “The acoustic properties of granular materials with pore 
size distribution close to log-normal”, J. Acoust. Soc. Am., 110(5), 2371–8. (2001).

 25 M. E. Delany and E. N. Bazley, “Acoustical properties of fibrous absorbent materials”, Appl. 
Acoust., 3, 105–16 (1970).

 26 J. F. Allard and Y. Champoux, “New empirical equations for sound propagation in rigid 
frame fibrous materials”, J. Acoust. Soc. Am., 91(6), 3346–53 (1992).

 27 Y. Miki, “Acoustical properties of porous materials – modification of Delany–Bazley laws”, 
J. Acoust. Soc. Jpn., 11, 19–28 (1986).

 28 J. P. Dunn and W. A. Davern, “Calculation of acoustic impedance of multi-layer absorbers”, 
Appl. Acoust., 19, 321–34 (1986).



194 Porous absorption

 29 Q. L. Wu, “Empirical relations between acoustical properties and flow resistivity of porous 
plastic open-cell foam”, Appl. Acoust. 25(3), 141–8 (1988).

 30 A. Cummings and S. P. Beadle, “Acoustic properties of reticulated plastic foams”, J. Sound 
Vib. 1975, 115–33 (1993).

 31 K. Attenborough, “Ground parameter information for propagation modeling”, J. Acoust. 
Soc. Am., 92(1), 418–27 (1992).

 32 Y. Champoux and J. F. Allard, “Dynamic tortuosity and bulk modulus in air-saturated porous 
media”, J. Appl. Phys., 70, 1975–9 (1991).

 33 Y. Champoux and M. R. Stinson, “On acoustical models for sound propagation in rigid 
frame porous materials and the influence of shape factors”, J. Acoust. Soc. Am., 92(2), 
1120–31 (1992).

 34 X. Olny and R. Panneton, “Acoustical determination of the parameters governing thermal 
dissipation in porous media”, J. Acoust. Soc. Am., 123(2), 814–24 (2008).

 35 K. Attenborough, “On the acoustic slow wave in air filled granular media”, J. Acoust. Soc. 
Am., 81, 93–102 (1982).

 36 K. Attenborough, “Models for the acoustical characteristics of air filled granular materials”, 
Acta Acust., 1, 213–26 (1993).

 37 J. G. Berryman, “Confirmation of Biot’s theory”, Appl. Phys. Lett., 37, 382–4 (1980).
 38 A. Koponen, M. Kataja and J. Timonen, “Tortuous flow in porous media”, Phys. Review 

E, 54(1), 406–10 (1996).
 39 U. Umnova, Keith Attenborough, H.-C. Shin and A. Cummings, “Deduction of tortuosity 

and porosity from acoustic reflection and transmission measurements on thick samples of 
rigid-porous materials”, Appl. Acoust., 66, 607–24 (2005).

 40 K. Attenborough, “Acoustical characteristics of porous materials”, Phys. Rep., 82, 179–227 
(1982).

 41 D. L. Johnson, J. Koplik and R. Dashen, “Theory of dynamic permeability and tortuosity 
in fluid-saturated porous media”, J. Fluid Mechanics, 176, 379–402 (1987).

 42 J. F. Allard, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 
Elsevier Applied Science (1993).

 43 D. K. Wilson, “Simple, relaxational model for the acoustical properties of porous media”, 
Appl. Acoust., 50(3), 171–88 (1997).

 44 D. K. Wilson, V. E. Ostashev, S. L. Collier, N. P. Symons, D. F. Aldridge and D. H. Marlin, 
“Time-domain calculations of sound interactions with outdoor ground surfaces”, Appl. 
Acoust. 68, 173–200 (2007).

 45 E. Sarradj, T. Lerch and J. Hubelt, “Input parameters for the prediction of acoustical 
properties of open porous asphalt”, Acta Acustica uw Acustuca. 92, 86–96 (2006).

 46 M. C. Berengier, M. R. Stinson, G. A. Daigle and J. F. Hamet, “Porous road pavements: Acoustical 
characterization and propagation effects”, J. Acoust. Soc. Am., 101(1), 155–62. (1997).

 47 I. P. Dunn and W. A. Davern, “Calculation of acoustic-impedance of multilayer absorbers”, 
Appl. Acoust., 19(5), 321–4 (1986).

 48 J. Xu, J. Nannariello and F. R. Fricke, “Optimising flat-walled multi-layered anechoic linings 
using evolutionary algorithms”, Appl. Acoust., 65(11), 1009–26 (2004).

 49 J. F. Allard, R. Bourdier and A. L’Esperance, “Anisotropy effect in glass wool for normal 
impedance in oblique incidence”, J. Sound. Vib., 114, 233–8 (1987).

 50 V. Tarnow, “Measured anisotropic air flow resistivity and sound attenuation of glass wool”, 
J. Acoust. Soc. Am., 111(6), 2735–9 (2002).

 51 M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. 
I Low-frequency range”, J. Acoust. Soc. Am., 28(2), 168–78 (1956).

 52 M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. 
II Higher frequency range”, J. Acoust. Soc. Am., 28(2), 179–91 (1956).

 53 C. Zwikker and C. Kosten, Sound Absorbing Materials, Elsevier (1949).
 54 D. L. Johnson, J. Koplik and R. Dashen, “Theory of dynamic permeability and tortuosity 

in fluid-saturated porous media”, J. Fluid Mechanics, 176, 379–402, (1987).
 55 J. F. Allard, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 

Elsevier Applied Science, (1993).
 56 D. K. Wilson, “Simple, relaxational model for the acoustical properties of porous media”, 

Appl. Acoust., 50(3), 171–88, (1997).



Porous absorption 195

 57 D. K. Wilson, V. E. Ostashev, S. L. Collier, N. P. Symons, D. F. Aldridge and D. H. Marlin, 
“Time-domain calculations of sound interactions with outdoor ground surfaces”, Appl. 
Acoust. 68, 173–200, (2007).

 58 E. Sarradj, T. Lerch and J. Hubelt, “Input Parameters for the Prediction of Acoustical 
Properties of Open Porous Asphalt”, Acta Acustica uw Acustuca. 92, 86–96, (2006).

 59 M. C. Berengier, M. R. Stinson, G. A. Daigle and J. F. Hamet “Porous road pavements: 
Acoustical characterization and propagation effects”, J.Acoust. Soc. Am., 101(1), 155–62. 
(1997).

 60 I. P. Dunn and W. A. Davern, “Calculation of acoustic-impedance of multilayer absorbers”, 
Appl. Acoust., 19(5), 321–4, (1986).

 61 J. Xu, J. Nannariello and F. R. Fricke, “Optimising flat-walled multi-layered anechoic linings 
using evolutionary algorithms”, Appl. Acoust., 65(11), 1009–26, (2004).

 62 J. F. Allard, R. Bourdier and A. L’Esperance, “Anisotropy effect in glass wool for normal 
impedance in oblique incidence”, J. Sound. Vib., 114, 233–8, (1987).

 63 V. Tarnow, “Measured anisotropic air flow resistivity and sound attenuation of glass wool”, 
J. Acoust. Soc. Am., 111(6), 2735–9, (2002).

 64 M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I 
Low-frequency range”, J.Acoust. Soc. Am., 28(2), 168–78, (1956).

 65 M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. II 
Higher frequency range”, J. Acoust. Soc. Am., 28(2), 179–91, (1956).

 66 C. Zwikker and C. Kosten, Sound absorbing materials, Elsevier, (1949).
 67 C Wassilieff, “Sound absorption of wood-based 00.materials”, Appl. Acoust., 48(4), 339–56, 

(1996).
 68 N. N. Voronina and K. V. Horoshenkov, “A new empirical model for the acoustic properties 

of loose granular media”, Appl. Accoust. 64(4), 415–32, (2003).
 69 M. Vasina, D. C. Hughes, K. V. Horoshenkov and L. Lapcik, “The acoustical properties of 

consolidated expanded clay granules”, Appl. Acoust. 67(8), 787–96, (2006). 
 70 R. T. Muehleisen, C. W. Beamer and B. D. Tinianov, “Measurements and empirical model of 

the acoustic properties of reticulated vitreous carbon”, J. Acoust. Soc. Am. 117(2), 536–44, 
(2005). 

 71 T. F. W. Embleton, J. E. Piercy and G. A. Daigle, “ Effective flow resistivity of ground surfaces 
determined by acoustical measurements”, 74(4), 1239–44, (1983).

 72 K. V. Horoshenkov and M. H. A. Mohamed, “Experimental investigation of the effects of 
water saturation on the acoustic admittance of sandy soils”, J. Acoust. Soc. Am. 120(4), 
1910–21, (2006)

 73 M. J. M. Martens, L. A. M. van der Haijden, H. H. J. Walthaus, and W. J. J. van Rens, 
“Classification of soils based on acoustic impedance, air flow resistivity and other physical 
soil parameters”, J. Acoust. Soc. Am., 78, 970–80, (1985).



6 Resonant absorbers

By exploiting resonance it is possible to get absorption at low to mid-frequencies. It is 
difficult to achieve this with porous absorbers, because of the required thickness of the 
material. Furthermore, treatments are often placed at room boundaries where porous 
absorbers are inefficient as the particle velocity is low. For many resonant absorbers, 
placing the device at the boundaries will improve their effectiveness. The absorption 
characteristics of these resonant devices are a peak of absorption, as shown in the thick 
line in Figure 6.1. Unlike porous materials, wide band absorption is difficult to achieve 
in one device, and so one of the frequent challenges in the design of resonant structures 
is to extend the bandwidth.

There are two common forms of the device: the first is the Helmholtz absorber, which 
is named after the German physician and physicist Hermann von Helmholtz (1821–94) 
and the second is a membrane or panel absorber. The ideas and concepts of resonant 
absorption have been known for many decades. In recent years, some more specialist 
devices have been produced, for instance clear absorbers, but these are still based on 
the same basic physics. While some devices, such as many basic Helmholtz absorbers, 
can be predicted with reasonable accuracy, others, such as membrane devices, are still 
designed by trial and error. These treatments are commonly employed to treat low 
frequency room modes and as parts of silencers within ventilation systems.
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Figure 6.1 Normal incidence absorption coefficient measured in an impedance tube for:
  mineral wool; and
  the same material covered with the perforated sheet shown in Figure 6.9 

to form a Helmholtz absorber.
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6.1 Mechanisms

Resonant absorbers involve a mass vibrating against a spring. The two common types 
of resonant absorber are illustrated in Figure 6.2. In the case of a Helmholtz absorber, 
the mass is a plug of air in the opening of the perforated sheet. The resonance is 
produced by the same mechanism which generates a note when you blow across a 
beer bottle. To make this into an absorber, losses are provided by damping to remove 
sound energy; this is often provided by a layer of mineral wool. For a membrane (or 
panel) absorber, the mass is a sheet of material such as rubber, mass loaded vinyl or 
plywood which vibrates. The spring in both cases is provided by air enclosed in the 
cavity. By changing the vibrating mass and the stiffness of the air spring, the resonant 
frequency of the device can be tuned, and it is at the resonant frequency that absorption 
is a maximum.

To achieve losses, damping is required. Often, this is best achieved by placing porous 
absorbent where the particle velocity is large – in the neck of the Helmholtz resonator 
or just behind the membrane in the panel absorber. In the latter case, the absorbent 
should not be so close as to inhibit movement of the membrane. Alternatively, for 
Helmholtz devices with small openings, viscous losses within the neck can be used to 
gain absorption; this is a technique which allows devices without porous absorbent, 
such as microperforated absorbers, to be produced. For panel absorbers there are 
also internal losses within the vibrating membrane, but these are usually too small 
to give high absorption. More significant are the losses that come from the mounting 
between the membrane and the enclosure. Problems arise in predicting performance of 
membrane absorbers, as the absorption from the boundaries is hard to characterize.

Before discussing the relevant design equations, some example constructions are 
given to provide a sense of what commercial devices are like. After the design equations, 
more complex and unusual constructions will be considered.
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Porous absorbent

Perforated sheet
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d
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Porous absorbent
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Figure 6.2 Typical constructions for (a) membrane, and (b) Helmholtz absorbers.
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6.2 Example constructions

6.2.1 Bass trap membrane absorber

Small rooms often exhibit a poor low frequency response with significant emphasis due 
to standing wave modes and de-emphasis where modal excitation is small. There is also 
limited space within which to fit treatments. Porous absorbers are ineffective at these 
modal frequencies, because the particle velocity near walls and in corners is essentially 
zero for these long wavelengths; and also the treatment would have to be made so deep 
that significant space within the room would be lost. This problem can be solved by 
using a resonant absorber, such as a membrane design. A membrane absorber converts 
the high sound pressure fluctuations typically found at wall surfaces and in corners 
into selective absorption in the modal frequency range. As the use of sub-woofers has 
become more popular in small sound reproduction rooms in recent years, there is a 
growing need for modal frequency management. It has also been shown that the use 
of multiple in-phase subwoofers located at specific room locations can also be used to 
reduce excitation of room modes below their cut-off frequency.

Figure 6.2a shows a typical device. The membrane converts pressure fluctuations into 
air motion. As the membrane sympathetically vibrates over a selective low frequency 
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Figure 6.3 Top: Measured and predicted normal incidence absorption coefficient for a 
commercial membrane absorber (Modex™). Bottom: A typical installation in 
a small reproduction room, the absorber is in the corner of the room. (Photo 
courtesy of RPG Diffusor Systems, Inc.)
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range, determined by its mass and the air spring stiffness, it pushes air through an 
internal porous layer producing low frequency absorption. Simple relationships exist 
between the design frequency of these resonant systems and the membrane mass, 
stiffness and cavity depth, and these will be outlined below. Figure 6.3 illustrates the 
absorption coefficient of this type of device and also shows an example application 
where the absorbent is placed in the corner where the pressure is a maximum for all 
room modes. There is also a prediction of the performance using a transfer matrix 
approach as discussed below. This prediction illustrates, however, that for membrane 
absorbers the design equations are often inexact in predicting the resonant frequency. 
There are many reasons for this. For instance the physical mass of the membrane is 
often different from the vibrating acoustic mass due to mounting conditions. Finite 
element analysis might be used to help overcome these problems.

If the absorber has a sharp resonant peak with a high Q factor, there is a risk of 
creating a notch at the wrong frequency, thus aggravating rather than ameliorating the 
modal problems. Consequently, experimental verification of the absorption is necessary, 
although at these low frequencies this is not easy. The results shown in Figure 6.3 were 
measured in an unusually large impedance tube.

Specific problem frequencies can be addressed with individually tuned absorbers, and 
while bass membrane absorbers can be designed for a specific frequency and offer a 
high absorption efficiency, their bandwidth over which they are effectively absorbing is 
rather limited. One can broaden the absorption by introducing additional damping in 
the air cavity, but this often lowers the maximum absorption efficiency. An alternative 
solution is to use a range of modules, each tuned to work in a different one-third octave 
band for more general broadband absorption. But a considerable amount of the room 
boundary must be covered with absorbent to get broadband low frequency absorption.

In multipurpose spaces, bass absorbers which can be turned on and off are useful 
to alter the acoustic for different uses. It has been suggested that this can be achieved 
using inflatable absorbers like air mattresses.1

6.2.2 Conventional Helmholtz absorbers

Currently, wood is more often than not the preferred surface treatment in general 
architectural spaces, as well as in critical listening and performance spaces. However, 
one of the problems is that flat wooden panels may generate problematic reflections 
compromising speech intelligibility and music quality. To treat offending reflections, 
upholstered fibreglass or stretch fabric systems are often used. But it is also possible to 
use flat attractive wooden panels and also provide absorption at specified frequencies. 
Figure 6.4 illustrates such a system and an example application. The grooves are mostly 
a visual trick to hide the holes as these are often not visually desirable. At the base of 
the grooves there is a single or double diameter hole, providing a sound path through 
the panel. By varying the groove (i.e. hole) spacing, the hole diameter, and the rear 
air cavity depth and content, it is possible to obtain absorption over a wide variety of 
frequencies. The design equations are given later in this chapter and are much more 
successful than when the formulations are applied to membrane absorbers.

These Helmholtz absorbers are constructed from class A medium density fibreboard 
(MDF) cores either painted or surfaced with wood veneers or simulated wood grain 
melamine. The rear of the panel is covered with a black non-woven glass matt to provide a 
resistive layer and also to conceal the contents behind the panel. In addition, a fibreglass 



Figure 6.4 A commercial Helmholtz absorber and an application on the walls and ceiling 
in the auditorium of TheTimesCenter. (Architects: Renzo Piano Building 
Workshop. Acoustician: JaffeHolden Acoustics, Norwalk, CT. Photos courtesy 
of n’H Akustik + Design AG and RPG Diffusor Systems, Inc.)
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Figure 6.5 Random incidence absorption coefficient for different Helmholtz absorbers:
  small hole, shallow cavity;
  large hole, shallow cavity;
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panel is attached to the back of the glass matt to provide further resistance and losses.
Figure 6.5 shows typical absorption coefficients for different cavity depths and hole 

sizes. As the holes enlarge, the open area increases leading to greater absorption at 
higher frequencies; there is also a slight increase in resonant frequency. These trends 
can be predicted by the design equations given later, but they will not predict the 
absorption coefficient values greater than 1 shown in the graph. These arise because of 
issues with reverberation chamber measurements, such as edge diffraction, which is not 
included in the prediction models (see Chapter 12 for further discussion). Increasing the 
cavity depth causes the stiffness of the spring to decrease, and consequently the peak 
absorption decreases in frequency; again this is predictable.

The absorbers shown here are not particularly unusual in terms of the acoustics they 
exploit. The physics behind the mechanisms has been known for more than a century. 
The problem with this type of construction is getting the perforated sheet with the 
correct hole size and open area. Standard perforated board, such as peg board, has too 
small an open area; most perforated metals have too large an open area. Consequently, 
the perforated sheet often has to be specifically constructed for acoustic purposes, 
which makes it more expensive than if stock items could be used. However, CNC 
fabrication offers an unlimited choice of design parameters.
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Figure 6.6 Top: a small scale Schroeder diffuser, FlutterFree® (top left) and a perforated 
version with square holes (top right) forming a Helmholtz absorber. Bottom: 
random incidence absorption coefficient for various systems:

  no holes, Helmholtz mounts, shallow cavity;
  square holes, normal mount, shallow cavity;
  no holes, Helmholtz mounts, deep cavity; and
  square holes, normal mount, deep cavity.
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6.2.3 Absorption and diffusion

Figure 6.6 shows a Schroeder style diffuser, which has square holes to provide mid-
frequency absorption via resonance. These are relatively shallow diffusers and so are 
only efficient diffusers above 3 kHz, unless modulation is used to extend the bandwidth, 
as discussed in Chapter 9. Below 3 kHz, absorption is provided by a resonant 
mechanism via the square holes. The diffuser is mounted over porous absorbent with 
a cavity behind, similar to Figure 6.2b. Consequently, this is a hybrid device providing 
absorption and diffusion in different frequency ranges. As the frequency ranges are 
different, it is assumed that the absorption mechanism should not have too much 
effect on the diffusion performance and vice versa. The frequency of absorption can 
be varied by choosing the hole size, open area and cavity depth. Although in this case, 
the amount of variation in these design variables that is achievable is rather limited, 
because of restrictions imposed by the diffuser surface profile.

This surface is also provided without holes. In Figure 6.6 the absorption coefficients 
for two mounting types are shown. The panel can be mounted with a 1.6 mm gap 
between the laths (planks) – this is labelled Helmholtz mounts. This gives a small 
slit opening to the back cavity and as this contains a porous absorbent it generates 
additional bass absorption via resonance. This additional bass absorption can be useful 
in treating spaces with excessive bass reverberation. Similar bass absorption can also be 
achieved by using tuned membrane absorbers, but a Helmholtz mechanism is generally 
easier to achieve in a device.

The square holes shown in Figure 6.6 are responsible for the peaks in absorption 
around 500–600 Hz. The Helmholtz slits provide absorption at a few hundred Hertz 
or less. Again, the resonant frequency can be easily tuned by choosing an appropriate 
cavity depth and plank spacing.

6.2.4 Microperforation and clear absorbers

Acousticians have long sought a fully transparent absorbing finish to control 
reverberation in a room, while maintaining the view through glazing. Glazing is a 
popular building material, and there are considerable advantages in combining lighting 
and acoustic function into one device to save on materials and cost. This can be achieved 
by exploiting microperforation. Figure 6.7 shows a variety of clear microperforated 
materials. These are most often used as Helmholtz devices, but without the normal 
resistive material. For instance, the device might be rather like a double glazing unit, 
with the first pane being a 5 mm thick panel with sub-millimetre diameter holes spaced 
5 mm apart, with the holes being drilled mechanically. Alternatively, narrow microslits 
cut into acrylic or PETG using lasers might be used, which is less expensive and gives the 
possibility of using decorative microslit patterns. These panels are typically suspended 
in front of glazing, rather than integrated into the window mullions.

The device provides absorption through high viscous losses as air passes through 
the small holes, which are only a bit larger than the boundary layer. This inherent 
damping eliminates the need for fibreglass or other porous materials in the air cavity 
between the perforated sheet and the reflective surface behind it. Thus it is possible to 
provide fibreless, clear absorption. To augment the mid-to low frequency absorption, 
the device can be curved, tilted or shaped to provide redirection or diffusion at mid- and 
high frequencies. The surfaces are transparent when looked at from straight on, but at 



Figure 6.7 Some clear microperforated absorbers: (A) Kaefer 0.1 mm thick foil (printed, 
translucent and transparent); (B) transparent foil on left and translucent foil on 
right diagonally spring tensioned in mount; (C) Akustik & Innovation 1 mm 
thick sheet mounted with standoffs; (D) Deamp 4 mm thick frosted, translucent 
and transparent microslit panels; (E) Kaefer panels 3–15 mm thickness, and (F) 
Akustik & Innovation 17 mm thick honeycomb panel. (Photos courtesy of RPG 
Diffusor Systems Inc.)
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Figure 6.8 Measured random incidence absorption coefficient for four microperforated 
devices:

  1 mm sheet, 200 mm backing depth, 0.5 mm holes spaced at 5 mm;
  1 mm sheet, 50 mm backing depth, 0.5 mm holes spaced at 5 mm;
  two 0.1 mm foils, 50 mm backing depth, 0.2 mm holes spaced at 2 mm; and
  0.1 mm foil, 50 mm backing depth, 0.2 mm holes spaced at 2 mm.
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oblique angles the holes become more apparent, although the surface is still translucent.
Figure 6.8 shows typical absorption coefficients for these materials. For the thicker 

sheet material, the absorption is not as controllable as with Helmholtz devices with 
resistive material. The requirement for small holes restricts the frequency range over 
which the resonant absorption can be achieved within manufacturing constraints. So 
the thicker materials are useful devices for treating troublesome low to mid-frequency 
noise and reverberance in spaces such as atria.

Maa,2 who developed the concepts of microperforation in the 1960s, showed that 
the sheet thickness and hole diameter should roughly be the same for high absorption. 
Consequently, to get absorption in the frequencies important for speech, it is necessary 
to use a thinner material, say 0.1–0.2 mm thick, and to make the holes smaller and 
closer together. Figure 6.8 shows typical absorption coefficients. The foil might be 
made from a material such as polycarbonate and stretched to provide a clear wrinkle-
free finish or from substances such as polycarbonate or ETFE. Double layers can also 
be used to broaden the absorption bandwidth. An example result for two layers of 
microperforated foils is shown in the figure.

In addition, a 1 mm microperforated sheet can be bonded to both sides of a clear 
polycarbonate honeycomb (shown in Figure 6.7F), to form a structurally strong material 
that, for instance, might be used as part of a lighting system or as a suspended cloud, 
which can allow daylight into a space with a glass ceiling. Alternatively, the micro-
perforated material might be fixed to another material with much larger holes to give 
a more structurally robust microperforated absorber.3 Figure 6.9 shows such a device 
made from wood; the absorption coefficients are shown in Figure 6.1. Manufacturing 
the microperforations is easier in the thinner materials.

The advantage of clear microperforated absorbers is that being clear they can be 
hung some way from the backing surface without making the room appear smaller; 
the additional backing depth can help low frequency performance. To get absorption 
across a broader frequency range, a double layer construction is needed, or additional 
porous absorbent needs to be placed on the room surface.

Microperforated clear absorbers also have potential applications within double 

Figure 6.9 A microperforated wood absorber. Left: front view; right: rear of panel 
with and without non-woven glass matt. The light coming through the five 
microperforations in each larger hole can be seen. The panel can be used 
with only the non-woven substrate, but typically fibreglass is used behind the 
microperforated panel. (Photos courtesy of RPG Diffusor Systems Inc.).
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glazing units; the absorbent could help prevent the built up of reverberant sound 
between the glazing panes and alter the mass-spring-mass resonance. The absorbent can 
also be used in glazing units which have natural ventilation openings.4 It has even been 
suggested they can be used in transparent noise barriers.5 The optical transmittance of a 
single microperforated sheet at normal incidence is about 80 per cent, so some loss of 
optical performance occurs.

Microperforation is also useful even when transparency is not needed. Made from 
the right material, these absorbers can be more robust than porous absorbers in harsh 
environments. Indeed the performance of these structures is largely independent of the 
material used (provided the material does not significantly vibrate). They also have a 
rather surprising ability not to get clogged up even in very dusty environments; probably 
due to the vibrating plug of air within the pores. Wood, metal and other materials can 
be microperforated to gain absorption. Such absorbents might be used where fibreless 
materials are required, for instance in situations where there are concerns about bac-
terial contamination, for instance in food and pharmaceutical industries. They might 
also be used where fibre contamination is a problem, such as in the microelectronic 
industries or ventilation system silencers.6 They could also be used within double-
leaf partitions where low weight is important, for instance in aircraft and cars.

Later in this chapter, the design equations for microperforated devices will be 
outlined and shown to be accurate. The use of double layers hung in free space as 
resistive absorbers will also be considered.

6.2.5 Masonry devices

In 1917 Straub patented the CinderBlox, the first concrete masonry unit (CMU). In 1965, 
slotted blocks were introduced to provide low frequency absorption. The slots produce 
a Helmholtz device to provide bass absorption. Figure 6.10 shows a modern equivalent. 
While the old blocks were useful for noise control, the flat or split face of these blocks 
can create reflection problems which degrade acoustics. Consequently, a phase grating 
diffuser is used to break up the reflected sound wavefronts. The design utilizes two 
slotted Helmholtz resonator chambers, as well as the phase grating pressure gradient 
absorption mechanism (see Chapter 7). Typical absorption coefficients are shown in 
Figure 6.11. Painting reduces the high frequency absorption as it seals the porous concrete 
surface, but does not affect low frequency absorption as would be expected. Good 
insulation against sound transmission is achieved because of the heavy construction.v

Figure 6.10 CMU (concrete masonry unit) which uses two slotted Helmholtz absorbers to 
provide bass absorption, DiffusorBlox® (one slot is difficult to see).



Figure 6.11 Random incidence absorption coefficient for a masonry unit. The slots provide 
absorption via a Helmholtz mechanism, producing low frequency absorption:

  slotted, unpainted;
  not slotted, unpainted;
  slotted, painted; and
  not slotted, painted.

0

0.2

0.4

0.6

0.8

1

1.2

100 160 250 400 625 1000 1600 2500 4000

f (Hz)

A
bs

or
pt

io
n 

co
ef

fic
ie

nt

5

3

26

7

5

3

26

7

1

8

(A) (B)

Figure 6.12 Above: illustrations show sound (1) striking two absorber systems. The steel 
plates (2) pistonically vibrate against the foam spring (3), mounted on a rigid 
backing (8). The porous absorption also damps plate bending modes (5) 
and absorbs higher frequencies which diffract around the plate (6) through 
a perforated (7) metal frame. The right hand device has some of the porous 
absorbent in front of the steel plate, protected by a perforated sheet, which 
generates additional mid-high frequency absorption. Top: pictures of the two 
systems.
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6.2.6 Metal plate resonators

Most devices described in this chapter use the air within a cavity to act as a spring. But 
it is also possible to make a resonant absorber where the spring of the porous material 
skeleton is exploited within a membrane absorber. As the spring is stiffer than would 
be the case for air, a more heavy mass is needed. A possible construction is a steel plate 
≥1 mm in thickness, which vibrates against a foam or polyester spring.7 Figure 6.12a 
illustrates the absorption mechanism. Sound strikes the steel plate which pistonically 
vibrates against the spring, mounted on a rigid backing. The porous absorption also 
damps plate bending modes and absorbs higher frequencies which diffract around the 
plate through a perforated metal frame. This arrangement provides low frequency 
absorption as seen in the heavy line in Figure 6.13. To provide broad bandwidth 
absorption, part of the rear porous material can be moved to the facing side of the 
plate resonator. In Figure 6.12b the foam also absorbs high frequencies striking the 
face. Photos of the devices are also shown in the figure.

By exploiting all three mechanisms it is possible to make an absorber which operates 
over about six octaves. Figure 6.13 shows the measured random incidence absorption 
coefficients for the two devices shown in Figure 6.12. Fuchs et al.8 give formulations for 
calculating the key resonant frequencies of the absorber, but not the absorption coefficient.

6.2.7 Passive electroacoustic absorption

A sealed loudspeaker within an enclosure is like a membrane absorber: the diaphragm 
is a resonating mass; the compliance of the air in the enclosure is the restoring spring; 
and any porous material within the enclosure provides additional damping. So it is 
possible to use a loudspeaker as a resonant absorber. The loudspeaker is not being 
driven – this is not an active impedance system – it is just responding to the incident 
sound with passive electrical components across the input terminals. (A similar use of 
electromechanical systems has also been suggested for Helmholtz absorbers,9 and for 
reducing cavity resonance in pipes.10)

0

0.2

0.4

0.6

0.8

1

1.2

63 125 250 500 1000 2000 4000

A
bs

or
pt

io
n

co
ef

fic
ie

nt

f (Hz)

Figure 6.13 Random incidence absorption coefficients for two metal plate resonators:
  with front perforations to exploit porous absorption at mid-high 

frequencies, and
  without perforations (data courtesy of Fraunhofer Institute for Building 

Physics, Stuttgart, Germany).
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Using a loudspeaker as an absorber has several advantages: loudspeakers are cheap, 
readily available and already configured for rudimentary acoustic treatment. More 
importantly however, the electrical and magnetic properties of the loudspeaker will 
affect how the system responds to incident sound. Consequently, the bandwidth and 
quantity of absorption can be tuned, within certain limits, by altering the electrical 
coefficients of the loudspeaker.11 By applying resistive loads across the terminal, the Q 
of the resonant absorption peak can be changed because the damping in the system is 
changed. Measurements show that the absorption bandwidth can be altered by up to 50 
per cent. Applying capacitive loads across the terminals alters the resonant frequency by 
up to 30 per cent, but it also affects the damping in the system somewhat. Predictions 
indicate that by using inductors and capacitors together allows even greater changes 
in resonant frequency and broader absorption over two and a half octaves, as Figure 
6.14 shows.

6.3 Design equations: resonant frequency

Having discussed some example designs, this section outlines the most simple design 
equations. Consider a simple absorber formed by a cavity with a covering sheet. The 
sheet could either be perforated to form a Helmholtz design, or solid but flexible to form 
a membrane absorber (Figure 6.2). It could even be a flexible perforated membrane, 
which is a combination of the two. In the first two cases, the impedance of the cavity 
given in Equation 5.26 will simply be altered by the addition of mass ( jωm) and 
resistance (rm) terms. These are the acoustic mass and resistance respectively, arising due 
to the perforated sheet or membrane. The surface impedance of the resonant system is:
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Figure 6.14 Predicted absorption coefficients for a loudspeaker with an inductor in series 
with a 110 µF capacitor as a passive load:

  1;
  10;
  25; and
  100 H.
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where k = 2π/λ is the wavenumber in air; d the cavity depth; m the acoustic mass per 
unit area of the panel; ω the angular frequency; ρ the density of air; and c the speed 
of sound in air.

For now, the presence of porous absorbent within the cavity is ignored for simplicity. 
Systems resonate when the imaginary part of the impedance is zero, so to find the 
resonant frequencies the imaginary part of Equation 6.1 is set equal to zero. Consider 
a case where the cavity size is much smaller than the acoustic wavelength, i.e. kd <<1 
and cot(kd)→1/kd, then the resonant frequency f is given by:

 (6.2)

This is a general formulation. Now the specific instance of the Helmholtz resonator 
will be considered, followed by the case of the membrane absorber.

6.3.1 Helmholtz resonator

The perforated surface is divided into individual cells which are assumed to behave 
independently with a repeat distance D. D is defined in Figure 6.2, which shows a 
cross-section through the absorber. The absorber is assumed to be perforated in two 
directions, with the repeat length being the same in both directions. The individual 
cells will not be entirely independent at low frequency, and consequently physical 
subdividing of the volume may be required as the wavelength becomes large. This is 
especially true if absorption at oblique incidence is required, as would be needed for 
good random incidence absorption. In this case, lateral propagation within the cavity 
must be suppressed to maximize absorption. When a porous absorbent is placed in the 
cavity, sound propagation is generally normal to the surface, as discussed in Chapter 5, 
and so the need for subdividing is less critical, except at very low frequencies.

The hole spacing should be large compared to the hole diameter. The acoustic mass 
per unit area is then m = ρD2t′/πa2 where t′ is the thickness of the perforated sheet with 
the end corrections (end corrections allow for the radiation impedance of the orifices 
and are discussed later) and other variables are as defined in Figure 6.2. The sheet 
thickness t and hole radius a are assumed to be much smaller than the wavelength of 
sound in air. Under these assumptions, the resonant frequency is:

 (6.3)

where S = πa2 is the area of the holes, and V the volume = D2d of each unit cell.
This is the same formulation as derived by other methods, such as lumped parameter 

equivalent electrical circuits.12 The transfer function approach is used here because it 
can more easily generalize to non-lumped parameter cases, for example when the cavity 
size is no longer shallow compared to wavelength. It is also consistent with the theories 
used elsewhere in this book.

An alternative, but entirely equivalent formulation for the Helmholtz resonator 
uses the porosity, or fraction of open area, ε, of the perforated sheet. This is often 
more convenient to work with when using perforated sheets and can be derived by 
considering the geometry in Figure 6.2 to revise Equation 6.3:
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 (6.4)

 (6.5)

The vibrating plug of air within the perforations provides the mass of the device. The 
length of the plug of air is not just the perforated plate thickness. The effect of radiation 
impedance must be considered, including the mutual interaction between neighbouring 
vibrating air plugs. Consequently, the vibrating plug of air has a length given by the 
thickness of the panel plus end corrections to allow for the radiation impedance of the 
orifice. A full expression for the mass in Equation 6.2 is:13

 (6.6)

The last term in the equation is due to the boundary layer effect, and ν = 15 × 10–6 m2s–1 
is the kinemetric viscosity of air. This last term is often not significant unless the hole 
size is small, say sub-millimetre in diameter. δ is the end correction factor which to a 
first approximation is usually taken as 0.85 and derived by considering the radiation 
impedance of a baffled piston. A value of 0.85 does not, however, allow for mutual 
interactions between neighbouring orifices because it is based on a calculation for a 
single piston. Consequently, other more accurate formulations exist. For a porosity of 
ε <0.16, Ingard gives the correction factor as:14

 
(6.7)

In the limit of only one hole in an infinite plane, this is roughly 0.85, as given earlier. 
An alternative formulation, which works for more open structures, was developed by 
Rschevkin and reported by Cremer and Müller.15 This reportedly includes the limiting 
case of ε = 1:

 
(6.8)

For a square aperture, the formulation for ε <0.16, Equation 6.7, changes slightly 
to:14

 
(6.9)

For unusual shapes, the radiation impedance of the plug of air can be numerically 
evaluated using boundary or finite element models, but the changes this makes to the 
final resonant frequency are likely to be small.

An added complication with end corrections is that imperfections in constructions, such 
as burrs, may have an effect which will be ill-defined. For high amplitude sound, turbulence 
will reduce the acoustic mass and so the resonant frequency will increase. Grazing 
mean air flow is generally observed to also decrease reactance and increase resistance.

Figures 6.15 and 6.16 illustrate the effect of changing the open area on the resonant 
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Figure 6.15 Absorption coefficient of a Helmholtz absorber showing effect of open area. 
Hole radius 2.5 mm; porous absorbent flow resistivity 20,000 rayls m–1; 
thickness 2.5 cm; air layer thickness 2.5 cm; and perforated sheet thickness 
6.3 mm. Open areas:

  6%;
  12.5%;
  25%;
  50%; and 
  100%.
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Figure 6.16 Impedance of some Helmholtz absorbers showing effect of open area. Ge-
ometry same as Figure 6.15. Only one real impedance is shown because the 
variation with open area is negligible. Open areas:

  Re, 6%;
  Im, 6%;
  Im, 12.5%;
  Im, 25%;
  Im, 50%; and
  Im, 100%.
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frequency. The first figure shows the absorption coefficient, with the frequency at which 
peak absorption occurs decreasing as the open area reduces. The second figure shows 
the change of resonant frequency in terms of impedance where the frequency of the 
zero crossing of the imaginary part decreases as the open area reduces. Script 6.1 in 
Appendix B gives the code to generate the results. As the open area decreases, additional 
low frequency absorption is generated mainly due to the increased stiffness of the spring 
in the unit cell as the volume reduces. The high frequency absorption decreases because 
the proportion of solid parts of the perforated sheet increases, and these parts reflect 
high frequency sound. Similar results are seen in measurements.16

The maximum absorption decreases somewhat as the resonant frequency decreases. 
If these absorbers were tuned to a lower frequency, this decrease would be more 
marked. The reason for this is that the impedance of the porous material moves further 
from the characteristic impedance of air at low frequencies, making the absorbent less 
efficient. The peak absorption can be altered by changing the porous material flow 
resistivity as illustrated in Figure 6.17. In the case shown, when the flow resistivity is 
25,000 Nm–4s, the resistance is close to the characteristic impedance of air leading to 
high absorption. An additional effect of changing the flow resistivity is to change the 
bandwidth over which absorption is effective by altering the Q of the resonance. In this 
case, a higher flow resistivity would achieve a greater bandwidth, but will reduce the 
maximum absorption, as the resistance exceeds the characteristic value. A lower flow 
resistivity leads to an impedance less than characteristic, which results in a reduction 
in bandwidth and maximum absorption.

Figure 6.18 shows the trade-off between cavity depth and perforated sheet thickness. 
The perforated sheet thickness has been varied while keeping the total thickness of the 
device, cavity plus perforated sheet, constant. Making the covering sheet thicker can 
generate additional bass absorption. But this is at the expense of reduced bandwidth 
including decreased high frequency absorption.

Another common geometry is a Helmholtz device where slots are used instead of 
holes, see for example the CMU shown in Figure 6.10. This can have a considerable 
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Figure 6.17 Effect of flow resistivity (shown in legend in rayls m–1) on absorption of a 
Helmholtz resonator.
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advantage in some cases, as slots can be easier to make than holes. The orifices can be 
formed by sawing slots in board or by leaving spaces between parallel planks in wood 
claddings. For a lath or plank cladding, manufacturers can offer different mounting 
conditions, with and without spaces between the planks, which enables designers to 
choose the desired absorption characteristics (see Figure 6.6 for example). The difficulty 
with slotted Helmholtz devices is deriving the appropriate end correction. Kristiansen 
and Vigran17 use a formulation originally derived by Smits and Kosten:18

 (6.10)

This then gives a mass term of:

 
(6.11)

where w is the width of the slots. As shall be shown later, this gives accurate results.

6.3.1.1 Membrane absorber

For a membrane absorber, m in Equation 6.2 is simply the mass per unit area of the 
panel. A common simplification of the formulation is derived after straightforward 
algebraic manipulation. This gives the resonant frequency as:

 (6.12)

This is correct when the cavity is filled with air. If the cavity is filled with porous 
absorbent, then the system is no longer adiabatic, and an isothermal case must be 
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Figure 6.18 Effect of facing thickness (shown in legend in mm) on absorption of a 
Helmholtz resonator. The total thickness of the device (cavity plus facing) is 
kept constant.
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considered below about 500 Hz. In addition, the porosity of the porous absorber 
should be included although this is a minor effect for more commonly used materials 
as their porosity is close to unity. Under an adiabatic assumption, Equation 6.12 
becomes:19

 (6.13)

This formulation holds for oblique incidence when a porous absorbent is in the cavity, 
because the porous absorbent enforces propagation normal to the front face. For an air 
cavity without partitions, a new formulation is required for oblique incidence:

 (6.14)

where ψ is the angle of incidence.
Unfortunately, these simple formulations for membrane absorbers are often 

inaccurate. The membrane system is not as simple to model as the perforated absorber. 
For example, these all assume that the membrane does not support higher order modes 
at the frequencies of interest. The mass of the membrane is being treated as a single  
mass, and therefore the membrane should move as one, like a piston. The effect of 
bending stiffness is to increase the resonant frequency, but usually Equation 6.2 is 
dominant. Problems can occur if the membrane is small, because the whole mass may 
not be able to vibrate freely if it is secured at the edges. In this case, the actual vibrating 
mass may be less than expected, and additional losses at the fixings may occur. One 
solution to this is to attach the edges of the membrane using resilient foam so that the 
whole membrane can vibrate including the edges. If such a fixing is used, it is important 
that the cavity remains air tight. Alternatively, a surround from a loudspeaker can be 
used to increase the effective moving mass; this can reduce the resonant frequency of 
a membrane absorber to 60–70 per cent of its original value.

As the angle of incidence increases, there is an increasing chance of bending waves 
being excited. Consequently, the simple formulations above can break down. Unfor-
tunately, the modelling of such bending wave problems is complex, as it is very 
dependent on the construction used.

More complex modelling of panel absorbers does exist20–21 but the prediction models 
presented are not that useful in designing practical surfaces. It is possible to model the 
plate vibration, and then use a mode matching approach to derive the power absorbed. 
This is complex, and many parameters concerning real surfaces, such as the mounting 
conditions of the panel, will not conform to simple conditions that the prediction 
models use. Consequently, predictions are unlikely to match measurements well. This 
has already been illustrated in Figure 6.3. For the prediction shown in the figure, a 
transfer function matrix method was used as detailed later. There is a 10 per cent error 
in the prediction of the peak frequency. In this case, the peak absorption frequency is 
somewhere between the values given by Equations 6.12 and 6.13. If a more accurate 
model is required, it is probably best to use a finite element analysis.22
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6.3.2 Losses

So far, the above formulations have only allowed a calculation of the resonant frequency. 
A proper design method must also allow the absorption coefficient and surface 
impedance to be determined for all frequencies. To do this, the losses within the device 
must be modelled. These are determined by the resistance term rm in Equation 6.1. For 
a Helmholtz device with no additional porous absorbent this can be calculated using:13

 (6.15)

This formulation assumes that the hole radius is not sub-millimetre in size, to ensure it 
is larger than the boundary layer thickness. An alternative formulation for this resistive 
term derived by Ingard is often used:14

 (6.16)

where η is the viscosity of the air, with a value of 1.84 × 10–5 poiseuille. These theo-
retical equations do not allow for increased resistance that happens if burrs are 
present. Indeed, Ingard carried out empirical work to show that Equation 6.16 was 
approximately correct, but taking a value twice as large matches experimental results 
better. Equation 6.16 is more commonly quoted than Equation 6.15, but for most 
practical absorbers both are negligible, as is the difference between them! The exception 
is with devices such as microperforated absorbers where the size of the resistance is 
critical. For most designs, the losses contributed by Equation 6.15 are very small, and 
in order to get good absorption it is necessary to add porous material.

First, attention will be focussed on devices with additional porous material. The 
effect of the porous absorbent depends on where it is placed. Ideally, it should be 
placed where the particle velocity is a maximum. Porous absorption works primarily 
by viscous losses as sound penetrates the small pores. For this to be maximized, the 
air motion must be at its greatest, and this is achieved where the particle velocity is 
highest. For a Helmholtz resonator this means the absorbent being as close to the 
openings as possible, or even in the openings. A balance must be struck, however, as 
too much absorption in the neck might prevent resonance. The effect of placing an air 
gap between the perforated sheet and the porous absorbent is to reduce the resistance, 
and in most cases this will result in a decrease in absorption.16

For a membrane absorber, the porous absorbent should be just behind, but not 
touching, the membrane. Without the porous absorbent, the primary losses are most 
likely to come from within the membrane or from friction at the fixings between the 
membrane and the supporting structure. If the porous absorbent behind the membrane 
does not provide sufficient absorption, perforating the membrane to allow easier access 
to the porous absorber behind can be done. This then creates a hybrid Helmholtz-
membrane design. Then the design equations should be altered somewhat. The 
impedance of the membrane alone, zmem, will be a combination of resistance and mass:

 
(6.17)
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where rmem and mmem are the acoustic resistance and mass of the membrane. Similarly, 
the impedance of the perforated sheet forming the Helmholtz device, zhelm, will be 
formed from acoustic resistance and mass:

 
(6.18)

where rhelm and mhelm are the acoustic resistance and mass of the perforated sheet. It is 
necessary to make some assumptions about how these impedances interact. The simplest 
model is that the impedances act independently and in parallel; then a combined 
impedance can be derived. The impedance of the device with an air cavity is given by:

 (6.19)

where d is the cavity depth. To find the resonant frequency of Equation 6.19, the easiest 
technique is to plot z versus frequency using a numerical tool such as a spreadsheet 
and inspect for the zero crossing of the imaginary part or use a numerical root-finding 
algorithm. Later on, this type of formulation will be discussed in more detail for a 
microperforated thin membrane. The problem with applying the above formulation is 
in properly defining the impedance of the membrane.

For a Helmholtz device the design equations for the case with porous absorbent 
depend on where the porous layer is located. First some relatively simple formulations 
are considered and then a more complex treatment using transfer matrixes will be 
considered. The accuracy of these formulations will be demonstrated later in the chapter.

6.3.2.1 Porous layer right behind perforations

When the porous layer is right in front or behind the perforated plate, then the resistance 
behaves as though it is actually in the openings. This comes from a consideration of the 
flow through the device. As sound is squeezed through the holes, the particle velocity 
is increased. On the other side of the perforated sheet, the flux lines return to a free 
field case somewhat gradually; this is shown schematically in Figure 6.19. If the porous 

helmhelmhelm mjrz +=

helmmem

helmmem

zz
zz

kdcjz
+

+= )cot(

Figure 6.19 Flow through a perforated sheet.
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layer is within a hole diameter of the perforated sheet, it is assumed that the flux has 
not yet had time to return to a free field state. Consequently, the resistance added by 
the porous material, rm, is altered by the fractional open area of the perforated plate 
(porosity), ε. The resistance is:

 (6.20)

where ta is the thickness and σ the flow resistivity of the resistive layer. This form is 
assumed because the volume velocity is reduced by the open area (or porosity) ε, and 
has not yet had time to recover to a free space value. The key in absorber design is to 
make this resistance in Equation 6.20 as close to the characteristic impedance of air 
as possible, as this maximizes absorption. If characteristic impedance is achieved at 
resonance, absorption will be complete. Consequently, a balance between the open 
area, flow resistivity and absorbent thickness must be struck, while remembering that 
the resonant frequency of the device is also dependent on the open area of the per-
forated sheet. In addition to changing the resistance, the presence of the porous material 
directly behind the perforations also increases the end correction. While the effect is 
smaller than the change in resistance, it can still vary by 30–100 per cent, depending 
on the open area of the perforated sheet,23 with the biggest changes being for the most 
open sheets.

6.3.2.2 Porous layer in the middle of cavity with a perforated 
covering

It is assumed that the porous material is further than a hole diameter away from the 
perforated sheet; the materials are not too thick and are also away from the rigid 
backing. This is not a common situation as it is awkward to construct. As the bulk of 
the porous layer is away from the perforations, it is assumed that the velocity through 
the surface is the same as in free space. Consequently, the resistance term is given by:

 (6.21)

A more exact formulation would use a full transfer matrix approach as detailed in the 
following section.

6.3.2.3 More complete solution using transfer matrixes

A full multi-layer solution first calculates the impedance just below the perforated 
sheet or membrane, and then the effect of the sheet is considered by adding on this 
impedance. This is a very flexible solution method as it can allow for many different 
combinations in design. The solution discussed here is split into two forms: the first 
is when air is immediately behind the perforated sheet and the second when a porous 
absorber backs the perforated sheet.

The first case is shown in Figure 6.20. First, the impedance just behind the perforated 
sheet is calculated; this can be done to a first approximation using the equations set out 
in Section 5.5.1. Consider a simple case of a layer of absorbent of thickness d1 and an 
air layer of thickness d2. The impedance at the top of the absorbent is z1:
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(6.22)

where zi is the characteristic impedance and ki the wavenumber of the porous absorbent. 
The impedance at the top of the air layer and just below the perforation, z2, can be 
found by using a transfer matrix as discussed in Chapter 5:

 (6.23)

The impedance of the Helmholtz absorber, z3, is given by using Equation 6.6 and 
6.15:24

 (6.24)

where the additional viscous term in Equation 6.6 is ignored as it is generally small.
The second case, with the porous layer next to the perforated sheet is shown in 

Figure 6.2a. For simplicity, it is assumed that the entire cavity is filled with porous 
absorbent, and the cavity depth is d. This is a common construction because it is simple 
to make. Two solution methods can be attempted. The most simple is to consider that 
only plane waves propagating normal to the perforated sheet are present in the porous 
layer. Then the impedance immediately below the perforated sheet is given by:

 
(6.25)

where zi is the characteristic impedance and ki the wavenumber of the porous absorbent. 
Then the mass effect of the perforations can be added, and the effect of open area taken 
into account to give the surface impedance of the absorber, z2, as:

 (6.26)
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Figure 6.20 Construction for predictions around Equation 6.22.
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The mass and resistance terms due to viscous forces in and around the perforated plate 
are ignored because they will usually be negligible compared to the z1 term.

A more complex solution to this problem allows for the multiple waves propagating 
in the porous media. The surface is considered in a series of elementary cells of size 
D by D, each containing one hole. The velocity at the cell boundaries parallel to the 
perforated sheet is assumed to be zero. Unless the cavity is actually partitioned, this is 
only an approximation. This enables the pressure within the cells to be decomposed 
into a sum of modes within the cell in an analogous way to solving the modes in a 
room. The impedance below the perforated sheet, z1, is then given as a sum over modal 
terms:24

 
(6.27)

 
(6.28)

 (6.29)

 
(6.30)

where ki and zi are the wavenumber and characteristic impedance of the porous 
absorber. φ is the porosity of the porous absorber, say 0.98 for mineral wool. J1 is 
the Bessel function of the first kind and first order. The sum is carried out over all 
combinations of n and m when both are not equal to zero.

The sum converges as the contributions from higher modes reduce. In fact, in many 
cases only the plane wave term (n = 0 and m = 1) need be considered as the dominant 
propagation mode in a porous medium will be perpendicular to the perforations due 
to refraction. This is especially true when high flow resistivity materials are used. 
When only the first term is considered, Equations 6.27–6.30 give similar results to the 
more simple formulation given in Equation 6.25. Once the impedance, z1, immediately 
below the perforated sheet is known Equation 6.26 can be applied to get the surface 
impedance of the whole system including the perforated sheet.

6.3.2.4 Oblique incidence

For oblique incidence it can be assumed to a first approximation that the impedance 
of the Helmholtz absorber will be very similar to the normal incidence value, provided 
there is a significant amount of porous absorbent in the cavity and/or the cavity is 
partitioned. With porous material in the cavity, the dominant propagation direction 
will be normal to the front face due to refraction. Lateral propagation could change 
the impedance of the device at oblique incidences, but this is not normally significant. 
Figure 6.21 shows the measured impedance for a sample at normal and 60° incidence25 
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confirming this assertion. At low frequencies, without partitions within the cavity, 
this may become less true as lateral propagation modes become more significant. Any 
lateral propagation would be expected to decrease the absorption achieved for most 
angles of incidence.

There is a more complex and complete prediction model for oblique incidence.24 As 
the surface is periodic, it is possible to solve the problem with a Fourier decomposition. 
This method can only produce a solution when the wavelength in air projected onto 
the surface is an integer multiple of the spacing between the perforations, i.e:

 
(6.31)

where N is a positive integer, and ψ is the angle of incidence. With this principle, it is 
possible to carry out a Fourier decomposition into a series of modes within the porous 
material. Consider the case of a Helmholtz device where there the cavity is filled with 
porous material. The impedance just below the perforated sheet is given by:24,25
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Figure 6.21 Measured impedance for two angles of incidence for a Helmholtz absorber. 
Angles indicated in legend in degrees (data from Guignouard et al.25).
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where the subscript i indicates that the wavenumber and impedance apply to the porous 
layer. The porous material has a depth d and porosity φ .νm,n is defined in Equation 
6.30. Once z1 has been evaluated, Equation 6.26 can be applied to get the impedance 
of the surface above the perforated sheet at the front face of the absorber.

6.4 Example calculations

6.4.1 Slotted Helmholtz absorber

Kristiansen and Vigran17 carried out impedance tube measurements on a slotted 
absorber, which allows the accuracy of the above formulations to be partially tested. 
The absorber had an open area of about 24 per cent; the slots were 15 mm deep and 
10 mm wide; the cavity depth was 150 mm and a material with an air flow resistance 
of 86 Pa s m–1 was attached to the bottom of the slotted plate. Script 6.2 in Appendix 
B predicts the scattering from the slotted absorber, and it is compared with the experi-
mental data in Figure 6.22. Using the transfer matrix method with Equations 6.10, 
6.11, 6.20 and 6.1 gives accurate results as shown. Adding the resistance term, Equation 
6.15 or 6.16 has a negligible effect and only changes the absorption coefficient by less 
than a hundredth.

A simple calculation of the peak of absorption using Equations 6.4 and 6.10 yields 
a predicted resonant frequency about 100 Hz greater than measured. This shows 
the power and usefulness of the transfer function matrix procedure for Helmholtz 
absorbers. Similarly accurate results were also found by Ingard when he examined 
circular perforations14 with a thin resistive layer behind the perforated sheet.

6.4.2 Porous absorbent filling the cavity

Figure 6.23 compares the predicted and measured normal incidence impedance for 
a Helmholtz absorber. These use measurements by Guignouard et al.25 using a two-
microphone free field method to obtain both normal incidence and 60° incidence 

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200
f (Hz)

A
bs

or
pt

io
n 

co
ef

fic
ie

nt

Measured

Predicted

Figure 6.22 Predicted and measured normal incidence absorption coefficient for a slotted 
Helmholtz absorber (measured data from Kristiansen and Viglen17).
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results. The two-microphone technique is described in Chapter 3. Figure 6.24 shows 
the predicted absorption coefficients for three arrangements: a porous absorber, a 
porous absorbent faced with a porous sheet with and without an air gap between 
the porous absorber and the rigid backing. In addition, a measurement for one of 
the configurations is given. The predictions for normal incidence used the transfer 
function matrix technique given in Equations 6.22–6.24. The more complex modal 
decomposition model is unnecessary because the simple model gives satisfactory results. 
The porous absorber had a flow resistivity of 70,000 rayls m–1 and was 3 cm thick. For 
the perforated sheet, the holes had a radius of 2.5 mm, the open area was 17.5 per cent 
and the thickness was 0.75 mm. The prediction model gives reasonable accuracy.
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Figure 6.23 Impedance predicted and measured for a Helmholtz absorber (measured data 
from Guignouard et al.25).
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Figure 6.24 Absorption coefficient predicted for three absorbers, plus measurement 
for one case from Guignouard et al.25 (some interpolation of the measured 
impedance data was used to obtain the measured absorption coefficient):

  porous absorbent only, predicted;
  porous absorbent with perforated facing, predicted;
  porous absorbent with perforated facing and air gap, predicted; and
  porous absorbent with perforated sheet, measured.
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6.5 Other constructions

Having described the most common designs, more complex constructions and recent 
innovations will now be discussed. Much can be gained from application of the simple 
resonator design as discussed previously, but more complicated systems do exist. In 
trying to decide whether to use more complex constructions, the trade off lies mainly 
between acoustic performance and cost of manufacture and installation. After all, a 
piece of porous material covered with a perforated sheet is relatively inexpensive to 
produce. Once more complex designs are considered, like large scale microperforation 
or complex neck plates, the cost of the device will naturally increase. Consequently, the 
designs discussed in the following sections are most often used where space is a particu-
lar premium, or where special requirements, such as transparency, need to be achieved.

6.5.1 Shaped holes and slots

Vigran26 examined the effects of making conical rather than cylindrical holes for 
Helmholtz absorbers where the front plate is at least 1 cm thick. The conical holes are 
such that the smallest opening faces the source. In comparison to cylindrical holes, 
conical holes broaden the bandwidth of absorption, however the frequency of peak 
absorption increases somewhat. The conical holes also have high order absorption 
modes which are broader, resulting in increased absorption at mid-high frequencies. 
While it may be complex to form conical holes, similar devices can be made from 
shaped slots very easily.

6.5.2 Double resonators

The problem with resonant absorbers is that they have a relatively limited bandwidth. 
It is common to have to cover a greater frequency range than can be achieved by a 
single resonator alone. One possibility is to use a device that has multiple absorption 
mechanisms, such as the metal plate resonators described in Section 6.2.6. Another 
possibility is to stack a high frequency Helmholtz device in front of a low frequency 
device. The disadvantage of this is that the surfaces become very deep, and depth is often 
restricted by non-acoustic constraints. This double system can be most easily modelled 
as a transfer function matrix. Such a double design was a standard construction used 
by the British Broadcasting Corporation for many decades in their studios.

6.5.3 Microperforation

If the holes of a Helmholtz resonator are made small enough, then losses will occur due 
to viscous boundary layer effects in the perforations. To achieve this, the perforations 
must be sub-millimetre in diameter so that they are comparable to the boundary layer 
thickness. Then it is possible to achieve absorption without using a porous material. 
This becomes a useful technique because the perforated sheet and the back of the 
cavity can be made from transparent acrylic or glass and so forming a clear absorber. 
Commercial realizations of this were discussed in Section 6.2.4. From an academic 
viewpoint, this is a neat device, because the physics of the system is very simple and 
so accurate predictions are readily achieved. A microperforated device was reported 
by Cremer and Müller,27 where a multi-layer system originally devised by Rschevkin 
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is briefly outlined. It is Maa, however, who appears to have carried out the significant 
recent development of the concept.2

Formulations for the impedance of microperforated devices can be derived by 
considering the sound propagation within a cylindrical hole. This problem is well 
established and is the theoretical foundation of much work on microscopic propagation 
in porous absorbents. In fact, the earliest work was probably done by Lord Rayleigh. 
For a tube which is short compared to wavelength, it can be shown that the specific 
acoustic impedance of the tube is given by:2

 (6.36)

 (6.37)

where J0 and J1 are the Bessel functions of the first kind, of zero and first order 
respectively; t is the tube length, and a is the tube radius.

To get the specific acoustic impedance of the perforated sheet, Equation 6.36 must 
be divided by the plate open area ε. Maa details approximate solutions to the above 
equation, but with the advent of modern numerical tools on computers, it is as easy 
to implement Equation 6.36 directly as to use an asymptotic solution. To model the 
Helmholtz resonator, a transfer matrix must be used to get the surface impedance, zh:

 (6.38)

The second term is the impedance of the cavity which is assumed to be d deep and to be 
filled with air. The final term is the end correction to allow for the radiation reactance 
of the tube. The penultimate term is the radiation resistance for an orifice. Maa uses the 
formulation from Ingard14 given in Equation 6.16 above for the radiation impedance. 
Once the impedance is known, the normal incidence absorption coefficient can be 
readily obtained. These equations are most applicable for common sound intensities. 
For large intensities, the impedance will change due to non-linear effects; flow also 
affects the impedance, and formulations are given in Reference 28.

Figure 6.25 compares the prediction according to Equation 6.38 to measurements 
presented by Maa.2 The hole separation is 2.5 mm, the hole radius 0.1 mm, the 
plate thickness 0.2 mm and the cavity depth 6 cm. Reasonable agreement between 
measurement and prediction is achieved, although not as good as given in the paper. 
Script 6.3 in Appendix B gives the code for the predictions. The prediction shows a 
sharp peak due to a second order resonance. Such resonances are relatively narrow in 
frequency, and so if the results are summed in one-third octave bands, the second order 
peak appears less significant.

The problem with these systems is getting broadband absorption. As it relies on 
resonance, the absorption will be limited to a certain bandwidth. To extend the 
bandwidth, Maa and others have shown that multiple layers can be used. Each layer 
is then tuned to a different frequency range. This can then be solved by a transfer 
matrix solution taking each layer in turn. The problem with double layer devices is 
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they increase the depth and cost of the device, both of which are usually under strict 
restrictions by non-acousticians. Another solution to increasing the absorption at low 
frequency is to use a construction such as that shown in Figure 6.20, where porous 
absorbent is attached to the rigid backing.

For oblique incidence, the sound in the cavity travels at an angle to the normal, which 
is the angle of incidence. Consequently, Equation 6.38 should be altered to:

 (6.39)

where ψ is the angle of incidence. The effect of this is to increase the resonant frequency, 
and so raise the frequency at which absorption is significant. For large angles of 
incidence, however, the lateral coupling between adjacent holes within the cavity will 
become significant. This might be expected to lower the absorption for most if not all 
frequencies. Consequently, in a diffuse field the absorption would be expected to be 
broader, but the maximum absorption would be lowered.

As discussed previously, it is possible to combine membrane and Helmholtz 
mechanisms in a single device. Kang and Fuchs29 discussed the construction of such a 
device, which was a microperforated plastic membrane; the theory was also applied 
to glass fibre textiles. This treats the membrane and Helmholtz effects in parallel as 
discussed previously around Equation 6.19. Good agreement was found between 
impedance tube and reverberation chamber measurement, and the transfer matrix 
theory. An example result is shown in Figure 6.26, where random and normal incidence 
absorption coefficients are compared. The device had: a mass per unit area, m = 
0.14 kgm–2; thickness t = 0.11 mm; hole radius a = 0.1 mm; hole spacing D = 2 mm, and 
a cavity depth of d = 10 cm. As with the previous microperforated systems, the random 
incidence is less than the normal incidence absorption, and a shift in the frequency of 
maximum absorption is also seen.

If a microperforated material is used without a rigid backing, it can be used as 
a suspended absorber, attenuating sound incident from both sides. Figure 6.27 
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Figure 6.25 Predicted and measured absorption coefficient for a microperforated 
Helmholtz absorber (measurement data from Maa2).
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compares the attenuation generated by two microperforated materials with a rigid 
backing with that generated by a single and double layer device suspended in free 
space. (In the last two cases, the absorption is purely that which is dissipated in the 
device; the transmitted sound is not considered to be absorbed.) The single and double 
microperforated sheets suspended in free space provide low frequency absorption via 
the device’s flow resistance only, and this is maximized when the flow resistance of 
the structure is 2ρc.30 The additional low frequency absorption for the double layer 
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Figure 6.26 Measured and predicted absorption coefficient for a microperforated 
membrane for different incident sound conditions:

  measured, random incidence;
  predicted, random incidence; and
  predicted, normal incidence (after Kang and Fuchs29).
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Figure 6.27 Predicted absorption coefficient for various microperforated devices:
  single microperforated sheet in free space;
  single microperforated sheet in front of rigid backing;
  double microperforated sheet in front of rigid backing; and
  double microperforated sheet in free space (figure concept from Sakagami 

et al.30).



Resonant absorbers 227

material suspended in free space is, however, at expense of some of the mid-frequency 
attenuation.

It is also possible to make microperforated devices using narrow slots instead of 
cylindrical holes.31,32 This has advantages in making manufacture easier and allowing 
aesthetically pleasing etchings to be made. For an infinitely long slit of width w in a 
plate of thickness t the impedance can be written as:

 (6.40)

where ρe is the effective air density in the slit due to viscosity effects and is given by:

 
(6.41)

where ρ is the density of air and 

6.5.4 Lateral orifices

Another way to get clear absorption is to elongate the neck of the absorber laterally. 
Again the principle is to exploit viscous boundary layer losses in narrow openings and 
so remove the need for resistive material. Randeberg developed such a technique,33 and 
Figure 6.28 shows the device. The front and rear plates are perforated with reasonably 
large perforations (1–3 mm in diameter); the viscous losses occur in the propagation 
parallel to and between the plates. Strict control of the plate spacing is required, which 
must be of the order of the boundary layer thickness, about 0.2 mm. This spacing 
must be achieved to a high precision, as the results by Randeberg demonstrate that a 
change in spacing of 0.05 mm makes significant difference to the absorption obtained. 
Predicting the absorption of the system is complicated and requires a finite difference 
solution of the Navier-Stokes Equation. A simple solution using a calculation of 
vibrating mass based on the volume of the openings and the elongated orifice does 
not work.

The device gives very similar performance to the microperforated systems discussed 
previously and as such offers a different construction rather than improved acoustic 
performance. The absorption is limited to low to mid-frequencies.
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Figure 6.28 A Helmholtz absorber which uses lateral space between two perforated sheets 
as part of the neck of the device.
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6.6 Summary

This chapter has outlined some design principles, typical applications and theoretical 
models for resonant absorbers. Resonant absorbers play a crucial role in improving 
acoustic conditions. They are exploited to control modes and reverberation within 
rooms and enclosures and for reducing sound levels in many noise control applications. 
The next chapter details some absorbers that did not fit neatly into other chapters, 
including seating and absorbers from Schroeder diffusers.
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7 Some other absorbers

This chapter deals with some absorbers that do not easily fit into categories, but are 
nevertheless important to airborne acoustics. The first subject is seating and audience 
absorption. In many auditoria, the seating and audience form the main absorption in 
the room, and consequently being able to correctly measure and predict the absorption 
coefficient of the audience area is very important. The second subject is how to make 
efficient absorbers from Schroeder diffusers. Researchers started by looking into why 
the absorption from Schroeder diffusers could be large, and ended up inventing a new 
style of absorber.

There has been considerable interest in sonic crystals that absorb sound. It could 
be argued that phase grating surfaces designed to absorb sound are sonic crystals, but 
the concern here is with volumetric devices analogous to photonic crystals which can 
produce high attenuations – but only over limited bandwidths.

Over the years, there has been some disagreement about the absorbing ability of trees 
and ground. The chapter ends by examining the mechanisms and ability of achieving 
noise control through natural materials.

7.1 Seating and audience

The reverberation time in performance spaces is often dominated by the absorption 
of the seating and audience; it is essential that these can be measured or predicted 
accurately for correct design. Section 3.4.1 discussed how the absorption of seating 
should be measured, and so this discussion concerns the actual values of absorption 
coefficients that are available in literature and what they mean.

Beranek1 and Kosten2 have both produced data for the average absorption coefficients 
of occupied and unoccupied seating. The data was averaged from measurements in 
many halls and is useful for estimating reverberation time in the early stages of design. 
The use of average data is not reliable for later design work, however, as there is too 
much variation in the construction for modern seating and consequently, seating 
absorption coefficients can vary greatly. Figure 7.1 shows the spread and mean of the 
absorption coefficients measured by Davies et al.3 for nine seating types. Also shown 
are the average values from Beranek1 which are in common use. Considering the range 
of the current data, the agreement between the means measured by Davies et al. and 
Beranek is quite good up to 1 kHz. At higher frequencies, as Bradley4 explains, Beranek’s 
absorption data is quite possibly affected by differences in air absorption between the 
many halls measured. Discrepancies may also arise because modern theatre seating 
has slightly more padding than the older ones forming the bulk of Beranek’s data.
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For occupied seating, measurements by different authors are much more similar.5 
It appears that the absorption of occupied upholstered seats is dominated by the ab-
sorption of the occupants and does not vary much over different seat types. Whether 
occupied or not, the absorption coefficients have the characteristic curve shape of a 
porous absorber.

Figure 7.2 shows the effect on the absorption coefficient of varying the row spacing 
over the small range commonly found in auditoria. Increasing the row spacing decreases 
the absorption coefficient. Figure 7.3 shows the effect of carpet on the absorption 
coefficient. The addition of carpet, even below the seating, significantly increases the 
absorption and so is generally avoided in large concert venues.

Figure 7.4 compares occupied and unoccupied absorption coefficients. Although it is 
normal practice to try and make the absorption of seating the same whether occupied 
or not, this is not entirely successful. On a related issue, Hidaka et al.6 have suggested 
that draping the seats with felt can simulate occupied conditions. This appears to be 
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successful at mid-frequencies, but at low frequencies (100–200 Hz) it does not always 
work because the felt alters the seat dip effect.7,8

7.2 Absorbers from Schroeder diffusers

Numerous pictures and sketches of Schroeder diffusers can be found in Chapter 9, for 
example Figure 9.1. The Schroeder diffuser was designed to diffuse rather than absorb 
sound, although for sometime there has been anecdotal evidence of absorption. 
Now, some concerted scientific studies have been able to determine the source of the 
absorption, and even to show how to turn these diffusers into good absorbers. By 
changes in geometry and design, it is possible to change a Schroeder surface from a 
diffuser with low absorption to a highly absorbing surface. This is of great concern for 
diffuser installation, as it is very easy to accidentally make a highly absorbing surface 
through bad workmanship. Section 9.8 discusses some general principles to achieve 
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low absorption from Schroeder diffusers. What is discussed below is the mechanism of 
the absorption, and how this can be exploited to form a good absorber.

When Marshall and Hyde9 implemented their revolutionary use of Schroeder 
diffusers in the Michael Fowler Centre (see Figure 2.23), they used rather shallow 
and wide wells. This was born out of a desire to achieve moderate diffusion, but also 
because of a concern that the diffusers could cause excess absorption. Dramatic levels 
of absorption from Schroeder diffusers were measured by Fujiwara and Miyajima10 
in 1992, with the absorption coefficient ranging from 0.3 to 1, and at the time this 
absorption could not be explained. Fujiwara and Miyajima11 later reported that the 
quality of construction was to blame for some of the excess absorption; to achieve low 
absorption requires good workmanship. Commins et al.12 experimentally investigated 
the absorption characteristics of a Schroeder diffuser and found values peaking at 0.5. 
They showed that by sloping the bottom of the diffuser wells, the absorption could be 
reduced. In 1983, D’Antonio made the first absorption measurements of a commercial 
QRD® with seven 86.4 mm wide wells, with a maximum depth of 196.9 mm. The 
average absorption coefficient was 0.24 between 125 and 4,000 Hz, with a maximum 
value of 0.35 at 500 Hz.

Although workmanship can explain the excess absorption in many cases, even 
diffusers constructed to a high standard can have absorption coefficients higher than 
expected. Resonant absorption occurs due to the one-quarter wave resonances in the 
wells, but the absorption measured is too high to be explained by one-quarter wave 
resonance alone. It was Kuttruff13 who first postulated energy flow between the wells 
as a probable cause for the excess absorption, although his theoretical model could 
not predict the high absorption measured by others. Mechel14 thoroughly discussed 
the theoretical basis for the absorption effect, and although his studies lacked direct 
experimental verification, the prediction model developed was shown by others to 
be accurate. Wu et al.15 then brought together measurement and Mechel’s prediction 
model to provide evidence that the energy flow or strong coupling between the wells 
was indeed responsible for the high absorption. This mechanism is described in the 
following section.

7.2.1 Energy flow mechanism

Consider a pure tone wave incident onto a Schroeder diffuser. For simplicity consider 
just two neighbouring wells. Furthermore, consider this to be a frequency where one 
well is in resonance, and the neighbouring well is not, as illustrated in Figure 7.5. 
The energy at the mouth of the resonating well will be much greater than that of the 
non-resonating well. This means that there will be energy flow from the resonating 
well to the well that is not resonating. Consequently, around the entrances to the 
wells there is high particle velocity. Indeed, Fujiwara et al.16 showed that the particle 

/4

Incident

sound

Figure 7.5 Two wells of a Schroeder diffuser.
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velocity is up to 14 times greater at the mouth of the wells compared to the incident 
field. As sound moves around the front of the fins, from one well to the next, excess 
absorption occurs. This is the source of the additional absorption in Schroeder diffusers 
and occurs even in properly constructed structures.

Knowing that the front face of the diffuser is a region of high particle velocity, it 
makes sense to place resistive material at the well entrance if the desire is to make an 
absorber. Mechel14 demonstrated that a resistive layer at the well entrances turns these 

Figure 7.6 Normal incidence absorption coefficient for a quadratic residue diffuser with 
narrow wells, showing dependence on whether there is a covering at well 
entrance and what the flow resistance of the covering is:

  no covering;
  covering of 65 rayls; and
  covering of 550 rayls.
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diffusers into potentially useful absorbers. Figures 7.6 and 7.7 show the absorption 
coefficient and surface impedance for a profiled structure with and without a resistive 
layer. Two different resistive layers of different flow resistance are illustrated. The effect 
of the resistive layer is to broaden the resonant peaks, thereby generating absorption 
over a greater bandwidth. It also increases the impedance closer to the characteristic 
impedance for air, and thereby gains more absorption. The resistive layer can be made 
from wire mesh, cloth or any material with an appropriate acoustic resistance. The 
advantage of using wire mesh is that the absorber is then washable and durable, which 
can be useful in some applications.

The resistance of the covering must be such that the total resistance of the wells are 
close to the characteristic impedance. Too large a resistance leads to an overly damped 
system and the peaks of absorption are significantly lowered. This is illustrated in 
Figures 7.6 and 7.7. Too little resistance (no covering) leads to an uneven performance; 
too much resistance (550 rayls) leads to over damping, whereas 65 rayls gives the 
highest peak absorption.

7.2.2 Boundary layer absorption

When the wells of a Schroeder surface become narrow, the losses at the well walls due to 
viscous boundary layer effects can become significant. This can be exploited to produce 
greater absorption, but the role of the resistive layer must be considered. The key to 
obtaining a high absorption is that the combination of the covering material and the 
losses at the well walls should approach the characteristic impedance of air. If the wells 
are wide, a higher resistance will be needed from the covering material to compensate 
for the lack of boundary layer absorption. Similarly, if the walls of the wells are rough, 
then there will be more boundary layer absorption than with a smooth material, and 
this must be allowed for in the design.

7.2.3 Absorption or diffusion

It is possible to construct Schroeder surfaces to maximize the absorption or maximize the 
diffusion. Although the surface used to produce high absorption has the same ancestry 
as those used to disperse sound, crucial design differences result in radically different 
absorption properties. The two different design remits are contrasted below in Table 7.1.

As indicated in Table 7.1, measurements show that 2D surfaces usually absorb more 
than 1D surfaces, as shown in Figure 9.37. The reason for this is probably twofold:

1.  There are often a greater number of well depths in a 2D surface compared to a 1D 
surface. This means that there are more quarter wave resonances in the 2D surface, 
leading to more frequencies at which resonance is occurring. This in turn means that 
the absorption due to quarter wave resonance is significant for more frequencies, 
and the energy flow between the wells is also greater, leading to more losses.

2.  There is a greater surface area of well boundaries in the 2D surface compared to 
the 1D surface. It is at these boundaries that viscous boundary layer losses occur. 
Consequently, it is expected that the greater the boundary area, the greater the 
absorption (unless a high flow resistivity covering is used).

Some of the other features summarized in Table 7.1 are discussed in the following 
sections.
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7.2.4 Depth sequence

An optimum depth sequence for diffuse reflections does not necessarily produce the best 
absorption. It is possible to produce a set of depths that produces a better absorber than 
one based on the quadratic residue sequence (see Chapter 9 for definitions of different 
number sequences). This is done by using a set of well depths which produce more 
resonance frequencies, distributed more evenly in frequency, and optimally arranging 
to maximize energy flow between the wells. Mechel14 was the first to suggest this; he 
discussed how using a primitive root sequence to determine the well depths of the 
structure could result in a better absorber than the more common quadratic residue 
sequence. This is because the primitive root sequence generates more different well 
depths than a quadratic residue sequence. The simple procedure outlined below to 
determine well depths works even better, however, as the primitive root sequence does 
not evenly space resonant modes in frequency. Another possibility is to use a numerical 
optimization to find the best well depth sequence. This can follow the principles outlined 

Table 7.1 Construction differences between Schroeder diffusers and absorbers

Absorber Diffuser with little absorption

Well width Usually narrow to exploit viscous 
boundary layer losses.

Usually>2.5 cm to minimize 
boundary layer losses.

Covering Key to good absorption. Covering 
should be chosen so surface 
resistance is ≈ρ0c when added 
to well resistance to maximize 
absorption.

Should not be covered. If covering 
unavoidable, use low flow 
resistivity material away from well 
entrances.

1D vs 2D 2D surface often gives more 
absorption.

2D surface gives hemispherical 
dispersion, 1D surface diffuses in 
a single plane.

Number of different 
depth wells, N

Determined by the need to have 
a sufficient number of quarter 
wave resonances in absorption 
bandwidth.

A larger N usually makes a better 
diffuser.

Depth sequence Well depths should be chosen to 
evenly distribute well resonances 
across absorption bandwidth, 
best done using numerical 
optimization.

Chosen to maximize dispersion, 
best done using numerical 
optimization. Narrow period 
widths should be avoided.

Deepest well depth Determines low frequency limit 
of absorption.

Determines low frequency limit 
of diffusion, except when period 
width is small.

Construction Well sealed, no slits. Well sealed, no slits.

Mass elements 
(addition of 
perforated sheets 
or membranes)

Can be used to lower bandwidth 
of absorption.

Can be used to lower bandwidth 
of diffusion.

Well sides Can be rough. Should be smooth.
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in Chapters 9 and 10 for diffuse reflection optimization. The optimization can be tasked 
with maximizing the average absorption coefficient across the bandwidth of interest. As 
with diffuse reflection optimization, this is a slow and moderately complex procedure.

A simple procedure to determine the well depths is based on determining the resonant 
frequencies of the wells. To a first approximation, neglecting viscous boundary layer 
losses in the well, each well is a quarter wave resonator with resonant frequencies f 
given by:

 (7.1)

where dn is the depth of the nth well, and c is the speed of sound.
To maximize the absorption it is necessary to evenly space these resonant frequencies 

over the design bandwidth avoiding degenerate modes – modes with similar resonant 
frequencies. This can be simply achieved by a trial and error process using a calculation 
tool such as a spreadsheet. Once the depths are determined, it is necessary to order 
them to maximize the losses due to energy flow between the wells. To achieve this, 
wells causing adjacent in-frequency resonances should not be physically next to each 
other. This can be done quickly by hand.

Figure 7.8 compares the performance of an absorber made following this simple 
design method to that of an absorber produced using a numerical optimization.15 The 
performance of the absorber using the simpler design procedure is good. As might 
be expected, the optimization gives slightly better results, but that design involves 
considerably more computation and encoding effort. The resonant frequencies used 
during the simple design are also marked as vertical dashed lines. The drop at high 
frequencies >2.5 kHz occurs due to lack of resonances in the region above 3 kHz 
(beyond the frequency range shown in the figure). To illustrate that the ordering of 
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Figure 7.8 Absorption coefficient for profiled absorbers using different methods to 
determine the depth sequence:

  simple design method;
  designed using numerical optimization; and
  simple design method, ascending well order.
 Vertical lines indicate resonant frequencies for simple design method (data from 

Wu et al.15).
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the wells is important, Figure 7.8 also shows the results when the absorber is designed 
using the simple design method, but has the wells stacked in ascending order. There is 
considerably less absorption at some frequencies.

7.2.5 Use of mass elements

High absorption at low frequencies is the most difficult to achieve. Consequently, 
an important challenge is to get more absorption at lower frequencies from a given 
profiled absorber depth. Interestingly, in a paper by Fujiwara and Miyajima,11 it was 
reported that poorly constructed structures could provide high absorption below the 
lowest resonant frequency. It is speculated that this additional absorption came from 
cracks in the well bottoms forming Helmholtz resonators with air cavities behind. This 
inspired the idea that using perforated plates in some wells could significantly extend 
the absorption range towards the lower frequencies by adding mass to the system and 
so lowering the resonant frequency. Another possibility would be to use membranes to 
act as limp mass elements. A typical construction is shown in Figure 7.9.

Fujiwara et al.16 were the first to publish measurement results on a structure with 
Helmholtz resonators in the wells, adding mass and so getting better absorption at 
low frequencies. Wu et al.17 took this work further by producing a prediction model 
validated against measurement and some basic design methodologies. The simple 
concept of spacing resonant frequencies, as discussed in Section 7.2.4, can be used again, 
although predicting the resonant frequencies is more awkward with mass elements. In 
addition, multiple resonances from each of the wells need to be considered.

Wu et al.17 found that wells with perforations and variable depth wells without 
perforations are needed to get a wide enough range of resonant frequencies. Both well 
types are shown in Figure 7.9. The added mass within the perforations makes it difficult 
to keep the reactance of the impedance small at high frequencies and so too many wells 
with perforations make it difficult to achieve high frequency absorption. The holes of 
the perforations must be carefully chosen. If they offer significant resistance, it may be 
necessary to lower the resistance of the resistive material to achieve good absorption. 

z
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Figure 7.9 One period of a profiled sound absorber with perforated plates (adapted from 
Wu et al.15).
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These devices can produce greater absorption than a set of standard Helmholtz reso-
nators stacked next to each other, because of the multiple resonances within some of 
the wells, but they are more expensive to construct.

Figure 7.10 shows a typical result for two optimized designs, one with perforated 
sheets, one without. Measurements from the impedance tube and predictions are 
shown. This demonstrates that adding mass elements can extend the low frequency 
performance of these devices.

7.2.6 Number of wells

For a narrow bandwidth only a few different well depths are needed. Reducing the 
number of wells would be useful as it simplifies the design and so reduces manu-
facturing costs. Wu et al.17 designed a diffuser to work up to 3 kHz that only needed 
three different well depths. With this small number of wells, however, the density of 
resonances is insignificant above 3 kHz, and so the absorption decreases at higher 
frequencies. Incidentally, the choice of the correct value of the flow resistance for the 
resistive layer is even more important for absorbers with only a few wells.

7.2.7 Theoretical model

Having considered the mechanisms behind the absorption of the Schroeder diffusers 
qualitatively, a theoretical model for the absorber will now be presented. Boundary 
element methods could be used, but it is also possible to construct a theoretical model 
using a Fourier decomposition of the infinite periodic surface. This later model could 
also be used for profiled diffuser scattering. It is applicable to periodic structures 
and is almost as accurate as a boundary element model, but requires considerably 
less computation time. Both theoretical approaches divide into two parts: first the 
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Figure 7.10 Measured and predicted absorption coefficient for two different profiled 
structures:

  with perforated sheets, predicted;
  with perforated sheets, measured;
  no perforated sheets, predicted; and
  no perforated sheets, measured (after Wu et al.17).
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admittance of the individual wells must be calculated and then the absorption should 
be calculated from these well admittances.

7.2.7.1 Admittance of wells

The approach follows similar lines to the transfer matrix approaches used for porous and 
resonant absorbers in Chapters 5 and 6 and also described in Chapter 1. Consequently, 
the following is given in brief, and readers are referred to other chapters for more 
details. The admittance (or impedance) is needed at the entrance of the wells. The well 
width of a profiled absorber is often narrow compared with diffusers to provide more 
absorption; therefore the energy losses caused by viscous and thermal conduction in 
the wells cannot always be neglected. Consider the case where the well width w <<λ/2, 
where λ is the wavelength of the sound, so that only fundamental modes are considered 
to propagate in each well. The wavenumber in the wells, kt, is:18

 (7.2)

where k is the wavenumber in air; γ the ratio of the specific heat ≈7/5 for air; and dv, 
dh are the thickness of the viscous and thermal boundary layers respectively.

The thickness of the viscous and thermal boundary layers can be found from:

 (7.3)

where η is the coefficient of viscosity for air; ω the angular frequency; ρ the density of 
air; and f the frequency.

 (7.4)

where K is the thermal conductivity and cp is the heat capacity per unit mass of air at 
constant pressure.

For a slit with no perforated sheet present of depth ln, the impedance at the top of 
the well is given by:

 (7.5)

where rm is the resistance of the covering material and ρe is the effective density of air 
in the slit.19 The effective density can be calculated using:

 (7.6)

For a slit with a perforated sheet a distance dn from the well bottom, the impedance at 
the top of the perforated plate is given by:
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 (7.7)

where rp and mp are the added resistance and mass due to the perforated sheet. These 
can be calculated from Equations 6.6 and 6.15 or 6.16. The impedance at the top of 
the well is:

 (7.8)

where ln is the distance from the perforated plate to the top of the well.

7.2.7.2 From well impedance to absorption: BEM

Once the well impedances are known, a method for gaining the absorption coefficient 
is needed. One possibility is to apply one of the boundary element methods described 
in Chapter 8. The absorber is treated as a box with an impedance distribution on the 
front face. A source is placed in the far field and irradiates the absorber. An array of 
receivers on a sphere measures the far field scattered energy which is integrated to give 
the sound power reflected, Pa. A box with an infinite impedance on the front face of the 
same dimensions is placed in the same set up. The sound power reflected is calculated 
and in this case gives the incident power Pi. From these two powers, the absorption 
coefficient of the surface can be calculated:

 (7.9)
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Figure 7.11 Measurement and prediction of absorption for a periodic profiled absorber:
  multi-microphone measurement;
  infinite sample prediction; and
  boundary element method (BEM) prediction (adapted from Wu et al.20).
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Figure 7.11 compares a prediction of the absorption using a boundary element model 
compared to a multi-microphone free field measurement.20 Reasonable agreement is 
achieved. The low frequency discrepancies are as likely to be due to measurement 
inaccuracies as the BEM model. The BEM is rather laborious, and consequently a 
different method can be used exploiting periodicity; this is detailed in the next section.

7.2.7.3 From well impedance to absorption: wave decomposition

As the surface is periodic it is possible to decompose the scattered wave according to the 
periodicity of the surface. This greatly reduces the computation burden compared to a 
BEM model. There is an assumption that the surface is infinitely wide, and consequently 
the prediction accuracy may be compromised at low frequencies for finite samples. The 
analysis below closely follows the method used by Mechel14 and Wu et al.15 The sound 
field in front of the absorber, shown in Figure 7.9, is decomposed into the incident 
plane wave pi(x,z) and scattered field ps(x,z), which is made up of propagating and 
non-propagating evanescent waves:

 
(7.10)

where W = Nw is the width of one period.
To use the above set of equations, the coefficients An need to be obtained for the 

non-evanescent (propagating) waves. These coefficients represent the magnitude of the 
grating lobes, and consequently one coefficient needs to be obtained for every grating 
lobe. The number of grating lobes is usually rather small and so this solution will be 
much faster than a BEM, where hundreds or thousands of simultaneous equations are 
common. The corresponding radiating harmonics indices n, which can propagate to 
the far field, must satisfy the following relationship:

 (7.11)

The outward particle velocity along the positive z direction and the pressure can be 
related to the surface impedance as discussed in Section 1.4.1 and 1.4.2. For this theory 
it is more convenient to work with admittance. The relationship between particle 
velocity uz and pressure p is thus:

 
(7.12)

where β is the surface admittance, which can be calculated from the well impedance 
using the transfer matrix approach outlined in Section 7.2.7.1. The relations in 
Equation 7.10 are differentiated to give the particle velocity and these are then related 
to the pressure relations in Equation 7.10 using the admittance relationship in Equation 
7.12. This is imposing the boundary condition of the surface admittance onto the 
system of equations. This gives:
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(7.13)

As the absorber is periodic, then the surface admittance is also periodic. This enables 
the surface admittance to be represented by a Fourier analysis. Since the period is W, 
this gives the admittance as:

 (7.14)

 (7.15)

Equations 7.13–7.15 are combined to impose the periodicity of the boundary conditions. 
After multiplication by ej2πmx/W and integration over W this gives:

 (7.16)

 (7.17)

The infinite sum in m can be terminated by monitoring convergence as more terms are 
added into the sum. On the samples tested so far, the index limits may be taken as |m| 
≤ 2N, where N is the number of wells in one period.

Equation 7.16 gives a set of simultaneous equations relating the coefficients of 
the non-evanescent waves An to the surface admittance and other known factors of 
geometry, such as incident angle. These simultaneous equations can be solved using 
standard solution techniques to get the unknown coefficients.

By considering the energy in the scattered and incident waves shown in Equation 7.10 
it is possible to derive an equation for the absorption coefficient. This is given by:

 (7.18)

where the summation runs over radiating spatial harmonics only. The middle term is 
the specularly reflected energy, and the rightmost term the scattered energy. For a small 
period width W the specular reflection is the only non-evanescent reflection. In this case 
a normalized impedance on the surface of the structure, zn, can be derived from:

 (7.19)
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Figure 7.11 compares predictions from this Fourier model with the BEM modelling 
described in the previous section. Free field measurements are also shown. Good agree-
ment is obtained between the prediction models and measurements. Some discrepancies 
at low frequencies occur between the Fourier and BEM models; this is probably because 
the Fourier model assumes an infinite sample and the BEM model does not.

Figure 7.10 compared the Fourier theory and impedance tube measurements for two 
different samples. Again good accuracy is obtained. One of the keys to getting good 
comparisons between theory and measurement is to get good quality samples. Even 
apparently small imperfections in the samples can lead to large measurement errors.

This Fourier model can also be applied to periodic diffusers designed for 
scattering rather than absorption. Although this approach has not been verified, it is 
assumed that the predictions would be accurate. The advantage in using this method 
over a BEM model is the reduction in computation time and storage requirements.

7.3 Absorbing sonic crystals

When a wave passes through a periodic structure interesting effects happen. For instance 
when X-rays pass through a crystal, scattered energy is concentrated into particular 
directions to form grating lobes. The diffraction directions depend on the wavelength 
and the lattice spacings in the unit cell. In optics we have a similar phenomenon in what 
are called photonic crystals. In these periodic nanostructures of regularly repeating 
internal regions of high and low dielectric constant, photons propagate through the 
structure or not, depending on their wavelength. Wavelengths that pass through are 
known as modes and disallowed bands of wavelengths are called photonic band gaps. 
The acoustic equivalent is a phononic crystal, which is a material which exhibits stop 
bands for phonons, preventing phonons of selected ranges of frequencies from being 
transmitted through the material. A key factor for acoustic band-gap engineering 
is impedance mismatch between periodic elements comprising the crystal and the 
surrounding medium. If sound is incident on a set of periodically arranged cylinders, 
as shown in Figure 7.12, then there will be certain frequencies which will not pass 

a

source

receiver

Figure 7.12 A 2D sonic crystal.
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through the structure. Consequently, these sonic crystals offer the chance of reducing 
the transmission and/or absorbing particular frequencies. As described, such a structure 
is also known as a phononic crystal, because it is analogous to a photonic crystal.

To demonstrate why gaps appear, an analysis on a periodic waveguide will be used, 
which is a 1D sonic crystal. This is done because it simplifies the explanation, and the 
findings can be qualitatively generalized to 2D and 3D structures.

At low frequency, the crystal in Figure 7.12 has a periodic disturbance of the 
impedance, because sound cannot enter the cylinders. An analogous 1D structure 
would be a corrugated tube, as shown in Figure 7.13. This structure is best analyzed 
through a transfer matrix approach. A volume velocity rather than a particle velocity is 
used in the formulations to account for the change in cross-sectional area of the tube. 
The pressure pn and volume velocity Vn in the nth unit cell can be related to the pressure 
pn+1 and volume velocity Vn+1 in the (n + 1)th cell via an adapted form of Equation 1.29:

 (7.20)

where:

 
(7.21)

where b = Λ – a and the distances a and Λ and areas S1 and S2 were defined in Figure 7.13.
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As the structure is periodic, then the pressure (and volume velocity) must be a 
periodic disturbance with the same periodicity of the structure:21

 
(7.22)

where f(x) is the Bloch function, which has a periodicity arising from the lattice, i.e. 
f(x + Λ) = f(x) and K is the Bloch wavevector. If the structure is considered to be 
infinitely long, both the right and left propagating waves must be Bloch waves. The 
pressure and volume velocities between two periods can be stated as:

 (7.23)

Comparing Equations 7.20 and 7.23 shows that e±ϕKΛ are the eigenvalues of P. The 
determinant of P is 1, and therefore the eigenvalue solutions of P are:

 (7.24)

Adding the two Bloch wave solutions and rearranging yields the Bloch wavevector:

 (7.25)

Consequently, if ½(P11 + P22) ≤ 1 then waves can propagate through the structure. 
But if ½(P11 + P22)> 1 then Κ is complex and the Bloch waves are evanescent, and 
band gaps arise. Figure 7.14 shows the measured and predicted transmitted intensity 
through a corrugated waveguide. In the case shown, a = b and 2s1 ≈ s2. Using these 
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Figure 7.14 The transmission coefficient for 8 periods of a 1D sonic crystal with a = b = 
9.6 cm formed in a waveguide with areas of s1=0:0542 m2 and s2=0:0382 m2:

  measurement; and
  prediction (data from King and Cox22).
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values in Equations 7.21 and 7.25 yields ½(P11 + P22) = 1 – 9sin2(ka)/4. So waves are not 
propagated when the frequency, f, is 775 ≤ f ≤ 1,200 Hz and 2,750 ≤ f ≤ 3,180 Hz.

Close inspection of the figure shows that the band gaps measured are slightly lower 
than these predicted limits and furthermore, there is an additional dip at around 2 kHz 
which is not expected by the above analysis. These effects are due to the radiation 
impedance as the size of the waveguide changes.22 This is something that needs 
considering for accurate predictions, as was used for the predictions in Figure 7.14.

So a periodic crystal, whether 1D, 2D or 3D, has the potential to have band gaps 
– frequencies which are not transmitted. But whether band gaps arise depends on the 
geometry. Furthermore, to get full band gaps all the different periodicities need to be 
considered. For a square lattice structure shown in Figure 7.12, the smallest repeat 
distance is along the side of the lattice and is a, however, there is also periodicity 
diagonally across the crystal with a repeat distance of √2a. Consequently, the band 
gaps occur at different frequencies proportional to 1/a and 1/√2a. If these band gaps 
can overlap then any wave is reflected completely from this periodic structure in the 
overlapping frequency range.

Umnova et al. measured sets of cylinders at model scale with and without an 
absorbent covering. The cylinders had a filling ratio of 33 per cent, meaning that the 
cylinders occupied a third of the volume of the array and were quite closely packed 
together. Figure 7.15 shows the insertion loss, which is the change in sound level 
between the measurement with the cylinders and a measurement without the cylinders. 
A large insertion loss means more sound is prevented from being transmitted. With 
hard cylinders, the reduction in sound level at the receiver is uneven with frequency, 
and shows evidence of band gaps. For most noise control applications, such an uneven 
response with frequency is not useful, and consequently the structure needs altering.

Adding defects to the crystals, removing some of the cylinders, or introducing local 
variations in the spacings can help generate additional pseudo-band gaps. However, the 
response is still uneven. The addition of absorbent material provides energy dissipation 
and so improves the attenuation and has potential to make the response more even with 
frequency. It is important to use the right amount of absorbent, however. Too much 

Figure 7.15 Insertion loss for two model-scale sonic crystals made from:
  rigid cylinders; and
  cylinders covered with felt (data from Umnova et al.23).
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absorbent and the structure will not resonate and so the band gaps will not appear. A 
careful balance needs to be achieved.

It is possible to make these absorbent cylinders from trees,24 however consideration to 
how the trees will survive needs to be given. Trees packed close together will not thrive 
as they fight each other for light, nutrients and water. Published measurements on sonic 
crystals which give significant transmission loss use filling ratios in the range of 30 to 
55 per cent. One possibility is to form the crystals from repeated rows of hedges – these 
are effectively 1D arrays. In this case, it is possible to achieve good attenuations at the 
band-gap frequencies, although the performance is rather uneven with frequency.

7.4 Trees and vegetation

It is generally believed that trees have no practical part to play in noise control, and 
certainly a single row of trees is not going to reduce noise significantly. However, 
there is substantial evidence that tall vegetation can cause significant sound reduction 
compared with open grassland,25–28 provided a significantly wide tree belt is used, 
say greater than 30 m. Furthermore, whereas temperature inversion leads to higher 
sound levels over grassland, the levels in woodland are comparatively unaffected.29 
Consequently sound attenuation obtained with trees is fairly robust to changing 
weather.30–31 When evaluating the attenuations achieved by the trees, it is important to 
compare the attenuation data to a reasonable alternative, such as grassland.

The way a mature forest affects sound propagation usually splits into different fre-
quency ranges.32 Figure 7.16 shows how the sound from a typical traffic noise spectrum 
is attenuated by the presence of either a 100 m tree belt of pine trees, or by open pasture. 
The results shown are for the excess attenuation, which is the measured level corrected 
for air absorption minus the free field level. The free field level is the level that would 
exist with no ground, obstacles and neutral metrology. The pine forest attenuated the 
overall A-weighted sound level by 10 dB more than the pasture.

At low frequency, the ground effect whereby sound reflected from the ground 

Figure 7.16 Sound pressure level from traffic after propagating 100 m:
  in free field;
  over pasture; and
  through a pine forest. 
 A-weighted corrections applied to spectrum (after Huisman and Attenborough32).
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interferes with the direct sound between source and receiver is dominant. (The 
scattering from trunks and branches is small and the absorption from the leaves itself 
is negligible at these low frequencies.) The ground effect dip in the forest is usually 
around a few hundred Hertz, although this is geometry dependent. In a mature forest, 
a thick litter layer of partially decomposing vegetation usually lies on floor. In this 
case, the ground surface consists of a thick highly porous layer, with rather low flow 
resistivity resulting. The ground needs to be modelled as a complex layered structure; 
reported effective flow resistivity values range from 1 × 104 to 8 × 104 MKS rayls m–1.33 
This means the ground effect occurs at a lower frequency for the forest in comparison 
to the pasture. Whether this shift to a lower frequency is useful or not depends on 
the frequency spectrum of the noise to be attenuated. For many environmental noise 
sources, this shift to a lower frequency is not desirable, because the overall sound 
pressure level (A-weighted) is attenuated less.

At mid-frequencies, say around 1 kHz, the trunks and large branches begin to 
scatter the sound out of the path between source and receiver. There is little difference 
in the attenuation between the pasture and forest, however. It has been suggested 
that, by arranging the trees in particular arrangements to form sonic crystals, it might 
be possible to gain additional attenuation at these crucial mid-frequencies – see the 
previous section.

At high frequency, typically above 1 kHz, scattering is still important, and in addition 
the foliage attenuates the sound by viscous friction. To achieve most absorption requires 
trees with large foliage surface areas to maximize viscous losses. In addition, the canopy 
should extend as low to the ground as possible to ensure there are no paths through the 
forest which bypass the foliage and are not scattered, and also to increase the amount 
of foliage surface area. Evergreen trees are also important if the sound attenuation is 
to be maintained at all times of the year.

Predictions of mid- to high frequencies might use multiple scattering theory for 
an idealized random infinite array of identical parallel impedance-covered cylinders, 
with the foliage represented by arrays of much smaller cylindrical scatterers than the 
trunks.34 Huisman and Attenborough32 used a stochastic particle-bounce method. In 
conjunction with a two-parameter impedance model and an assumption about the 
dependence of incoherent scattering on distance and frequency, good agreement was 
obtained with measurements in a monoculture of 29-year-old Austrian pines.

There is little data on propagation through shrubs, tall crops and hedging. Aylor35 
made a series of measurements that demonstrate significant attenuation of sound above 
1 kHz through tall vegetation including corn, hemlock, brush and pine. There is a 
possibility of using these as natural noise control but more investigations are needed 
to prove the worth of this approach.

7.5 Summary

This chapter has discussed the absorption of seating; how to turn a Schroeder diffuser 
into an absorber; sonic crystals, and the absorption of trees. Accurate estimations 
of seating and audience absorption are vital to good room design, especially large 
concert halls for orchestral music. The absorption of Schroeder surfaces is a more 
esoteric subject. While the concept of a Schroeder absorber is interesting, and good 
absorption can be obtained, the cost of constructing such surfaces is rather high and 
this limits the commercial exploitation of these concepts. A similar comment could 
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be made about sonic crystals. The absorption of trees is interesting, because belts of 
vegetation are regularly planted, and the evidence is, with appropriate choice of trees 
and management, that these can provide useful amounts of absorption.
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8 Prediction of scattering

Being able to predict the reflected pressure from a diffuser enables efficient evaluation, 
design and characterization of the performance. Currently, this is usually done by 
considering the surface in the free field in isolation of other objects and boundaries. The 
prediction techniques could in theory be used to predict the sound for whole rooms or 
in outdoor environments such as street canyons (if the effects of weather are ignored). 
At the moment, however, long computation times and storage limitations mean that 
algorithms dealing with large spaces are forced to use relatively crude representations 
of actual scattering processes. Consequently, when predicting the responses in rooms 
and semi-enclosed spaces, such as street canyons or pavilions, it is more common to use 
geometric models. The issue of modelling scattering in geometric models is discussed 
in Chapter 12.

Therefore, the issue for this chapter is predicting the reflection from isolated surfaces. 
There is a range of models, from the numerically exact but computationally slow to 
the more approximate but faster techniques. The prediction methods can also be dif-
ferentiated as either time or frequency domain methods. In diffuser design, frequency 
domain methods have dominated. For this reason this chapter will concentrate on 
these methods. Table 8.1 summarizes the frequency domain prediction models which 
will be considered in this chapter, along with their key characteristics. The chapter also 
includes details of finite difference time domain (FDTD) models which could be the 
most efficient way of gaining reflected impulse responses.

The next section will start with the most accurate model, a boundary element 
method (BEM) based on the Helmholtz–Kirchhoff integral equation. It will then be 
demonstrated how the more approximate models can be derived from this integral 
equation, and the relative merits and limitations of the techniques will be discussed. 
To round off the chapter, an overview of less commonly used techniques will be given, 
including time domain modelling and FDTD.

8.1 Boundary element methods

When BEMs are applied to diffusers remarkable accuracy is achieved. The accuracy 
is much better than most acousticians are used to achieving from an acoustics theory. 
Acousticians are used to using empirical fixes to make measurements match predictions, 
but that is not often needed when BEMs are used to predict diffuser scattering. The 
disadvantages of BEMs are that the method is prone to human error in meshing the 
surface and, most importantly, it is slow for high frequencies and large surfaces. Some 
have attempted to apply the prediction methods to whole rooms for low frequencies but 
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this is very computationally intense, requiring super-computing facilities or a consid-
erable amount of patience while waiting for results.

8.1.1 The Helmholtz–Kirchhoff integral equation

The Helmholtz–Kirchhoff integral equation forms the core of many of the prediction 
models used. It is defined below and the following section will then discuss how it is 
solved. For steady state, constant frequency motion, the acoustic wave equation reduces 
to the Helmholtz equation:

 
(8.1)

where p is the acoustic pressure, r is a point in space and k is the wavenumber. Green’s 
first and second theorems are used to transform the differential equations based on 
Equation 8.1, which involve volume integrals, to an integral equation which is evaluated 
using integrals over the scattering surface. This Helmholtz–Kirchhoff integral equation 
formulates the pressure at a point, as a combination of the pressure direct from the 
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Table 8.1 Key characteristics of various frequency-domain prediction models for scattering. 
The accuracy and computational efficiency columns are indicative; the rank 
ordering of the top four prediction models might vary depending on surface type 
being considered and the particular implementation of the algorithm.

Model Accuracy
Computing 
time Notes

Standard boundary 
element method 
(BEM)

Best Slowest Exact provided surfaces are locally reacting and 
viscous boundary layer losses are small. Slow, 
especially for large surfaces or high frequencies.

Thin panel BEM An efficient method for thin surfaces, 
approximately halving the number of elements 
in a standard BEM model.

Kirchhoff 

↑
↓

↑
↓

Uses the Kirchhoff boundary conditions to 
approximate surface pressures and so is much 
faster. Less accurate for oblique sources and 
receivers, low frequencies, rapidly changing 
surface impedance profiles and surfaces with 
steep gradients.

Fresnel Replaces the numerical integration of Kirchhoff 
model by quicker to compute Fresnel integrals. 
Requires scattering across width and along 
length of surface to be orthogonal. Some useful 
simplifications available for flat and curved 
surfaces.

Fraunhofer or 
Fourier

Worst Quickest Simplifies numerical integral of Kirchhoff 
method, only useable in far field. Allows 
simpler Fourier principles to be applied. Good 
for understanding physical processes and 
designs, but least accurate.
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sources, and a surface integral of the pressure and its derivative over the reflecting 
surfaces. The single frequency form of the integral equation gives the pressure p as:1

 (8.2)

where r = {x, y, z} is the vector describing the receiver location; r0 = {x0, y0, z0} is the 
vector describing the source location; rs = {xs, ys, zs} is the vector for a point on the 
surface; pi(r, r0) is the direct pressure radiated from the source at r0 to the receiver at r; 
G is the Green’s function; n is the normal to the surface pointing out of the surface; E 
is the external region; s is the surface, and D is the interior of the surface.

The geometry is illustrated in Figure 8.1. pi(r, r0) is the pressure direct from the source 
at r0 to the receiver point at r, and so the first term on the right hand side represents 
the direct pressure. The integral is carried out over the surface, with rs being a point 
on the surface and n a normal to the surface pointing out of the surface, so the integral 
gives the contribution of the reflected energy to the pressure at r. By single frequency 
it is meant that the system is in steady state conditions so that the time variation 
exp( jωt) can be neglected. G is the Green’s function which gives how the pressure and 
its derivative propagate from one point in space to another point. Consequently, in 3D 
the Green’s function is simply a point source radiation equation:

 (8.3)

where r = |r – r0|. Carrying out the solution in two dimensions is extremely useful for 
diffusers as it can greatly decrease the computational burden in terms of storage and 
calculation time. In that case, the Green’s function is given by the Hankel function:

 (8.4)
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where H0
(2) is the Hankel function of the second kind of order zero. The asymptotic 

version of the Hankel function when kr is large is:

 (8.5)

where A is a constant. So this is a line source radiation equation as would be expected 
in a 2D world. The Hankel function is most efficiently evaluated by using polynomial 
expansions2 when kr is small and by using the asymptotic form in Equation 8.5 when 
kr is large.

There are three possible equations shown in Equation 8.2. The top case is when the 
point r is external to the scattering surface (r ∈ E), the middle case is when r is on a 
surface (r ∈ s), and the bottom case when r is internal to the scattering surface (r ∈ D).

The integral has two terms: one involving the surface pressure p(rs) and one involving 
the surface pressure derivative ∂p(rs)/∂n(rs). If the surface is taken to be local reacting, 
the derivative of the surface pressure will be related to the surface pressure by the 
surface admittance:

 (8.6)

where β ′ is the surface admittance. In BEM modelling, it is normal to define quantities 
in terms of an outward pointing normal. Surface admittances would normally be 
defined with an inward pointing normal. The prime is used to signify this difference, 
where β ′ = –β, where β is the more usual surface admittance. This definition of an 
outward pointing normal also affects the interrelations between admittance and 
surface reflection coefficient and is relevant when implementing the Kirchhoff solution. 
The assumption of local reaction means the surface admittance is independent of the 
incident and reflected pressure waves. For low absorption surfaces, where β ′ → 0, the 
term involving the pressure derivative can be neglected.

8.1.2 General solution method

Having defined the terms and the nomenclature for the integral equation, the general 
solution technique for a BEM will be presented. The BEM involves the application of 
Equation 8.2 twice:

1  The surface pressures, p(rs) on the scattering surface(s) are found.
2  A numerical integral is carried out over the surface to determine the pressures at 

the desired external points.

8.1.2.1 Determining surface pressures

The determination of the surface pressures is the rate-determining step of a BEM 
model. The surface pressures depend not only on the incident sound field but also on 
each other. This is a statement that there are mutual interactions across the surface, as 
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might be expected. To model the mutual interactions, the usual solution method is to 
discretize the surface into a number of surface (boundary) elements across which it is 
approximated that the pressure is constant. The elements must have sufficiently small 
dimensions to prevent errors in representing the continuous pressure variation by a set 
of discrete values. This is usually achieved by making elements smaller than a quarter 
of a wavelength in size for very simple surfaces. As surfaces become more complex it is 
safer to use element sizes of λ/8 or even smaller to ensure proper representation of the 
pressure variation, where λ is the wavelength of the highest frequency being modelled. 
Breaking the surface geometry into a series of elements – meshing the surface – can be 
a difficult process for complicated diffusers, but it can be greatly simplified by using 
specialist meshing programs. This is where human error is most likely to occur. Two-
dimensional BEMs not only have computational speed advantages, they are also useful 
because it is far simpler to mesh a 2D shape.

Once the surface has been discretized, a set of simultaneous equations can be set up 
with one equation for each boundary element. The equations will be for the surface 
pressures with r being taken for positions on the surface in the middle of each of the 
elements. In matrix form, Equation 8.2 can be rewritten as:

 
(8.7)

 
(8.8)

 (8.9)

where P is a (1 × N) matrix of surface pressures; Pi is a (1 × N) matrix of incident 
pressures direct from the source(s) to the surface; N is the number of elements; the 
subscripts n and m refer to the (n, m)th element of the matrix or the contribution from 
the mth element to the nth element surface pressure, and sm is the surface of the mth 
element.

The calculation of the matrix A is an important rate determining step in the boundary 
element method. It is roughly an N2 process, where N is the number of elements. It is 
relatively slower for 2D processes when compared to 3D models. This is because the 
Hankel function is slower to evaluate unless it is in-built and optimized for speed by 
the computing language used to code the numerical model. But then there are great 
time savings to be had in a 2D model, as Equation 8.9 is only a line integral rather 
than a surface integration.

The integration of Equation 8.9 can use various algorithms and efficient numerical 
techniques3 that can make significant time savings. It is also possible to use more 
approximate integration for elements that are far away from each other when the 
mutual interactions are less strong. This has to be done with care, however, because 
it risks compromising the accuracy of the solution. Evaluating Equation 8.9 when 
m = n, in other words evaluating the influence of an element on itself requires special 
consideration. The reason for this is the integral includes a singularity. The singularity 
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is relatively weak in this case, and so provided care is taken not to consider the case 
where rn = rs, then the numerical integration will converge to a correct value.

Once the simultaneous equations are constructed they can be solved using standard 
matrix solution techniques, which are now commonly available. The BEM method 
forms full matrixes so sparse matrix solvers used in techniques such as finite element 
analysis are not directly applicable.

If the simultaneous equations are solved, it is possible to get non-unique solutions at 
certain frequencies. These equate to eigensolutions of the interior of the surface being 
modelled. There are various methods for overcoming this problem. One solution is to 
form an over-determined set of equations; this is the CHIEF method.4 By placing some 
receivers in the body of the diffuser, where the pressure must be zero, it is possible 
to add additional simultaneous equations which help to ensure the correct solution 
is found. In choosing the receivers inside the body of the surface, often referred to as 
internal points, it must be remembered that if these internal points are at a node of an 
incorrect eigensolution, then they do not help. Consequently, several internal points 
should be used, avoiding lines of symmetry and simple integer relationships between 
internal point locations. Another remedy to the non-unique solutions problem is to 
combine Equation 8.2 with its derivative; this is the Burton Miller approach.1

In reality, most diffuser geometries are such that non-unique solutions are not usually 
found. Non-unique solutions are most common when the wavelength is small compared 
to the geometry, but cases with such small wavelength to structural size are not often 
attempted in diffuser calculations because the computational burden becomes too large. 
Consequently, at the moment it appears that non-unique solutions are more of a worry 
for mathematicians than acousticians.

A significant reduction in computation burden can be achieved if there are planes of 
symmetry in the surface and the source lies on the planes of symmetry. In this case, a 
simple image source construction can be used to take the place of identical parts of the 
surface and so greatly reduce the computational burden. This is shown in Figure 8.2. 
The pressure on identical parts of the surface will be the same and consequently it is 
possible to construct a solution using about half the number of elements that would be 
required to mesh the whole surface. This does not reduce time in setting up the simul-
taneous equations but it greatly reduces the time required to solve the equations and 
decreases the memory requirements. The easiest method to exploit the image source 
construct is to modify the Green’s function by an additional term:

 (8.10)

where r′ is the distance from an image source which is reflected in the plane of symmetry. 
Multiple symmetry planes may exist, and so multiple image sources may need to be 
considered. A similar process can also be applied to the 2D Green’s function.

It is also possible to assume non-uniform pressure variation across the elements. For 
instance, it is possible to define the matrices in terms of the pressures at the element 
boundaries and assume a linear relationship between these. This reduces the number of 
elements needed to correctly represent the pressure variation on the surface compared 
to constant pressure elements. This has potential to make a faster prediction model, 
but at the cost of a more complex implementation.
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8.1.2.2 Determining external point pressures

Once the surface pressures are known, Equation 8.2 becomes a more straightforward 
numerical integration which must be solved. This process is relatively quick. The use of 
efficient numerical integration algorithms and asymptotic solutions for the 2D Green’s 
function, when the receivers are far from the surface, can greatly speed up this process.

8.1.2.3 2D versus 3D

Cox5 examined whether it is possible to predict the scattering from 3D diffusers 
using a 2D BEM model. The surfaces he tested were single plane surfaces which were 
extruded in one direction, like 1D Schroeder diffusers and cylinders. This meant that 
the scattering was roughly orthogonal across the width and along the extruded length. 
In these cases, 2D models provided accurate predictions except at low frequencies (for 
the surfaces tested, this meant below 500 Hz). Cox derived expressions to correct the 
2D scattered polar response so that results matched the real (3D) diffuser scattering. 
These corrections affect the overall scattered sound power level and not the shape of 
the polar response.
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point
on surface
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Figure 8.2 Illustration showing the use of an image source for a diffuser made of two arcs. 
The top illustration shows the original configuration where the source lies on a 
plane of symmetry. The bottom shows the exploitation of mirror symmetry to 
halve the number of elements required in the BEM model.
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8.1.3 Thin panel solution

When a surface becomes very thin the above solution method will not work. The front 
and back of the surface have elements which are too close to each other, and the solution 
method often becomes inaccurate. It is possible, however, to provide a formulation in 
terms of the pressure difference and sum across the panel. Not only does this regularize 
the equations to make them solvable, it also approximately halves the number of 
elements required and so speeds solution times and reduces storage requirements.

The solution method requires both Equation 8.2 and its derivative. Terai6 showed 
that with correct regard for the jump relations, the integral equation and its derivative 
can be given by:

 
(8.11)

 (8.12)

where the 1 and 2 in the subscripts refer to the front and the back of an infinitesimally 
thick panel respectively. These are the equations for points on the surface (r1, r2 ∈ s) 
and should be used to set up the simultaneous equations which then yield the surface 
pressures. If the desire is to achieve a reduction in computational burden, further 
simplifications can be obtained if more assumptions are made. Two approaches will 
be considered: first, the case of a non-absorbing surface and second, the situation of a 
planar surface with non-zero surface admittance.

8.1.3.1 Non-absorbing surface

The surface is assumed to be non-absorbing and thin; then the differentials in the 
pressures on the front and rear surface are zero as the surface velocity is zero. Under 
this assumption, Equation 8.12 can be simplified to yield a single equation in terms of 
the pressure difference across the panel:

 (8.13)

Using this equation it is possible to discretize the front surface into a set of elements 
across which the pressure is assumed constant, and to set up simultaneous equations 
in the pressure difference between the front and rear of the panel p(rs, 1) – p(rs, 2). These 
simultaneous equations can then be solved to give the pressure difference for each element.

Once the pressure difference for each element is known, then the following equation 
is used to calculate the pressure at external points:
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 (8.14)

Incidentally, for a planar surface, it is simple to get the pressures on the front and the 
rear of the panel if these are wanted (they are not explicitly needed to get the external 
point pressures). The sum of the pressures on either side of the surface is equal to twice 
the incident pressure p(rs, 1) + p(rs, 2) = 2pi(rs, 1). This fact can be used with the values for 
the pressure difference between the front and rear of the panel p(rs, 1) – p(rs, 2) to give 
the actual surface pressures on either side of the panel.

The matrix form of the integral Equation 8.13 is highly singular when the interaction 
of an element with itself is considered. To overcome this difficulty Terai suggested using 
an asymptotic solution for calculating the contribution of an element’s radiation to its 
own surface pressure. For the 3D case this yields a line integral around the perimeter 
of the element:

 (8.15)

where θ is defined in Figure 8.3.
For the 2D case the corresponding equation is:

 (8.16)

In many cases, it is possible to set the distance a as being the length of the element, and 
so the factor above can be used to directly calculate the contribution of the element to 
itself. For some problems with complex geometries, however, more accurate results are 
obtained if a smaller value of a is used and the rest of the element is integrated using 
normal numerical integration procedures.

Apart from this detail, the solution method proceeds in exactly the same way as for 
the standard BEM model. The thin panel formulation is very useful for many scattering 
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surfaces. An overhead canopy above a stage can be treated as a thin rigid surface, 
and this formulation allows a faster solution than the standard BEM. The accuracy 
is compromised close to grazing angles, as it does not model the scattering from the 
edges which exist with real surfaces. More details on the accuracy of this approach 
are given later.

The method can also be applied to Schroeder diffusers, which have thin fins as 
part of the construction. Schroeder diffusers are discussed in Chapter 9 and several 
pictures are shown in Figure 9.1. The thin panel solution method allows the Schroeder 
geometry to be exactly modelled and the scattering predicted for any frequency. This 
is not true of most prediction methods, which are generally frequency limited as they 
assume plane wave propagation in the wells. This method provides unique solutions, 
provided no enclosed volumes are created out of the elements. Consequently, there is 
no need to use an over-determined system in many cases. A slightly neater solution for 
the Schroeder diffuser is to use a BEM which uses a combination of both normal and 
thin elements.7

8.1.3.2 Planar, thin surface with non-zero admittance

By assuming the surface is planar, some of the terms in Equations 8.11 and 8.12 
simplify. The aim is to reduce the number of elements involved in the calculation. 
One way of achieving a reduction in the number of elements is to assume that 
the admittances on the front and rear of the panel at any point are the same, i.e. 
β(rs, 1) = β(rs, 2). In room diffuser calculations this is not going to introduce large errors 
into the calculation because it is the scattering on the bright side which is of primary 
importance. For all but low frequencies the pressure is low on the rear of the panel, 
and consequently, what admittance is assumed on the rear is not terribly important. 
This admittance assumption might not be accurate in all cases. For example, if a 
diffusing roadside barrier is being considered, the scattering in the shadow zone at low 
frequencies is of interest.

Assuming that β(rs, 1) = β(rs, 2) is a reasonable approximation, and the surface is planar, 
then for receiver points r1and r2 on the front and rear surface, Equations 8.11 and 8.12 
can be re-written as:

 (8.17)

 (8.18)

The surface is again discretized into elements that are small compared to the wavelength. 
Then two sets of simultaneous equations can be constructed from Equations 8.17 and 
8.18. The first set of equations is in the sum of the pressures, using Equation 8.17, 
and the second is in the difference pressure across the panel, using Equation 8.18. 
These simultaneous equations are then separately solved. As two sets of simultaneous 
equations are being used, with half the number of elements when compared to a 
standard BEM, then the solution will be quicker by a factor of 4–8 times, depending 
on the implementation.
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The propagation to external receivers is carried out using the following equation:

 
(8.19)

The accuracy of this technique will be presented later in this chapter.

8.1.4 Acceleration schemes

When large areas of diffusers are used BEM models can become too slow to be practical. 
Storage requirements for the full matrixes also cause problems. In recent times, fast 
multipole methods (FMMs) have been developed for BEM.8 FMMs collect the 
boundary elements into clusters employing a classic BEM approach to elements in the 
near field and applying a more efficient FMM procedure for those in the far field. 
The computational effort for the conventional FMM increases for n elements by n3/2 
compared to the BEM, which increases by n2. Storage requirements are also reduced. 
The implementation of this technique is complex.

Another approach to improving BEM predictions is to use information concerning 
the physical nature of the surface boundary conditions to reduce computational burden. 
In the case of periodic surfaces, considerable improvements in prediction times can 
be achieved by representing the periodicity in the Green’s function. This technique is 
especially useful because diffusers are often applied in a periodic formulation.

Lam9 developed formulations for periodic, 2D hard surfaces using Bloch’s theorem.10 
For free waves in a periodic structure, all field quantities at two points exactly one 
period apart are related by the same factor. For surface scattering and a far field source, 
the incident pressure for identical parts of the structure will be related by a simple 
constant phase factor. The relationship between the total pressure at periodic points 
will be modified by the scattered wave. If the scattering is relatively weak, then it can 
be assumed that the constant phase factor relating the incident sound pressures between 
identical parts of the surface will also give the relationship for the total sound pressures. 
This may appear to be a large leap of faith as diffusers are designed to achieve strong 
scattering in the far field. Notwithstanding this design remit, it will be shown later in 
this chapter that the Kirchhoff boundary conditions form the basis of many reasonably 
good prediction methods, and there is an explicit assumption of weak scattering in 
applying the Kirchhoff boundary conditions. So this provides some hope that the weak 
scattering assumption may be reasonable.

Figure 8.4 illustrates a periodic structure and the geometry used. The pressure 
between identical points on adjacent periods is therefore:

 (8.20)

where ri=0 and ri=j are vectors for identical points on the surface, where j is an integer 
and i is an index referring to the appropriate period number. This formulation can deal 
with non-plane wave incidence and so can be used for near field sources and receivers. 
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As Equation 8.20 gives the relationship between the pressures on identical parts of the 
diffuser, it is possible to produce a new version of Equation 8.2 for periodic surfaces:

 (8.21)

where rs, 0 is the surface vector for the middle period only. The integration is only carried 
out over the middle period, surface s0, since once the pressure is known on the middle 
period, it is known for the whole surface (Bloch10). Effectively, the Green’s function 
has been modified in a way similar to the modelling of symmetry using image sources. 
The limits of the infinite sum can be taken as the physical number of periods present 
in the diffuser. Figure 8.5 shows the scattering from a periodic arrangement of six 
semicylinders. Measurements are compared to a standard BEM solution (modelling 
all six semicylinders explicitly), as well as the periodic formulation. Good agreement is 
obtained between the periodic and standard BEM, although some differences remain. 
One likely cause is that the number of periods used is relatively small and so edge 
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Figure 8.5 Scattering from six semicylinders. Two BEM models compared to measurement. 
5 kHz, normal incidence, one-third octave band:

  measured;
  standard BEM; and
  periodic BEM (data from Lam9).
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diffraction effects may significantly alter the surface pressures of the outer periods. 
Alternatively, it may be evidence that the weak scattering assumption is not entirely true.

This technique can also be applied to other structures and in 3D. For example, 
Figure 8.6 shows the scattering from a planar hybrid surface. This is a flat surface 
with a complex array of hard and soft patches and is discussed in detail in Chapter 11, 
and a picture is shown in Figure 11.1. In Figure 8.6, a standard solution where all 
periods are meshed is compared to a periodic formulation. The case is an array of 4 × 1 
periods at 2 kHz. The two prediction methods produce very similar results, validating 
the periodic formulation.

The reliance on the weak scattering theory for explaining the relationship between 
different periods of the device means that it is best to assume that this process works 
best where the Kirchhoff boundary conditions are accurate. Consequently, it might be 
expected that the periodic formulations would work less well at low frequencies, and 
for oblique sources and receivers, especially as these approach grazing angles. It would 
also be interesting to know how this formulation works for periodic arrangement of 
strongly scattering surfaces, such as pyramids or triangles.

8.1.5 BEM accuracy: thin rigid reflectors

The next two sections will examine the accuracy of BEMs. Consider first thin, rigid, 
planar and curved surfaces. These commonly occur in indoor and outdoor spaces and 
are relatively straightforward to mesh and predict using BEMs. It is also relatively easy 
to construct and measure the scattering from such surfaces, and so enable the accuracy 
of the prediction methods to be directly compared to scale model measurements (see 
Chapter 4 for the measurement techniques used).

Figure 8.6 Comparison of predictions from standard BEM model (top) and a periodic 
formulation (bottom) for a planar hybrid surface.
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The full BEM solution based on Equation 8.2 produces accurate predictions of the 
scattering over a wide range of frequencies11,12 for plane and curved surfaces. Figures 
8.7 and 8.8 compare predicted and measured results for the total and scattered pressure 
for a plane thin panel. Good prediction accuracy is achieved for both models. The thin 
panel model is based on Equations 8.13 and 8.14, and gives very similar results to the 
full BEM solution (for many angles the lines overlay each other) and is also quicker to 
predict. The thin panel and full BEM model only deviate for grazing angles and high 
frequencies. The deviations occur because the thin panel model does not properly 
represent the finite thickness of the panel, which becomes more critical at grazing 
angles when the wavelength is not large compared to the panel thickness. Inaccuracies 
arise because there are no edge elements in the thin panel case and so edge scattering 
is not properly modelled.
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Figure 8.7 Comparison of total field (incident plus scattered) for a plane surface measured 
and predicted by two boundary element models. Normalized to incident sound 
at receiver:

  measured;
  thin panel BEM; and
  3D BEM (data from Cox12).
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Figure 8.8 Comparison of scattered pressure from a plane surface: 
  measured;
  thin panel BEM; and
  3D BEM. 
 Normalized to incident sound at each receiver and offset by 57.5 dB (data from Cox12).
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8.1.6 BEM accuracy: Schroeder diffusers

Figure 9.1 shows pictures of Schroeder diffusers and Chapter 9 discusses the design of 
these surfaces in great detail. The diffuser consists of a series of wells of the same width 
but different depths. There are two approaches to modelling this surface. The first 
uses the thin panel solution and allows the diffuser shape to be exactly modelled; the 
second uses an approximate model of the surface as a box with a variable front face 
admittance (or impedance).

The thin panel solution allows explicit representation of the diffuser shape. The 
complete diffuser can be covered with thin panel elements. Figure 8.9 shows a typical 
example. The complete enclosure of the diffuser by thin panel elements forces the 
interior to have zero pressure provided no critical frequencies are found. Two other 
problems could arise from this representation: (1) a large number of thin panel elements 
with different sizes have to be sealed together, and the technique is therefore prone 
to meshing errors; and (2) the thin panel solution for a plane panel showed small 
inaccuracies for scattering at grazing angles, especially at high frequencies. This could 
be a problem for Schroeder diffusers with fins, as these are presented edge-on to sources 
normal to the surface. The main drawback of this method is that it uses a very large 

Figure 8.9 An example of a Schroeder diffuser meshed for prediction using a thin panel model.
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Figure 8.10 Comparison of scattered pressure from a Schroeder diffuser: 
  measured;
  thin panel BEM; and
  BEM with box model. 
 Normalized to incident sound at each receiver and offset by 50 dB (data from Cox12).
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number of elements and therefore predictions can exceed available computing power.
The approximate model, using a spatially-varying admittance on the front face of a 

box, has been used by most authors investigating Schroeder diffusers. The admittance 
on the front face at the entrance of each well is derived from the phase change of plane 
waves propagating up and down the wells. This representation is expected to work 
under certain conditions: (1) the frequency must be below the cut-off frequency of the 
well so plane wave propagation in the wells dominates; and (2) the impedance at the 
opening of the wells must be locally reacting, which means the radiation coupling 
between the wells has to be small. Also, unless the radiation impedance of each well is 
small, it should be represented in the admittance at the well entrances.

Comparisons with measurement show that the thin panel predictions of Schroeder 
diffuser scattering are accurate. Figure 8.10 shows an example for the scattered pressure. 
Similar accuracy is also achieved for the total field. The BEM model based on Equation 
8.2, using the box representation with a spatially-varying front face admittance, is also 
successful. This demonstrates that the simple phase change local reacting admittance 
assumption is reasonable – this is discussed in more detail in Chapter 9.

For oblique incidence sources, there is greater interaction across the front face of the 
diffuser and the box representation with a spatially-varying front face admit tance will 
be less accurate. Figure 8.11 shows an example for a source at 60°, where the thin panel 
model, which is assumed to be correct, is compared to the BEM using the spatially-
varying admittance box model. The BEM using the box model is most accurate close 
to the specular reflection angle and becomes more inaccurate for receivers further from 
the specular reflection angle.

8.1.7 BEM accuracy: hybrid surfaces

Hybrid surfaces use a mixture of absorbent and hard surfaces to generate a combination 
of absorption and dispersion. To test the accuracy of a BEM for such a surface, a single 
plane surface shown in Figure 8.12 was constructed.13 This was based on a fourth order 
maximum length sequence, i.e. there were 15 patches of either absorption or reflection. 
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Figure 8.11 Comparison of two prediction models for the scattered pressure for oblique 
sound incident on a Schroeder diffuser:

  thin panel BEM; and
  BEM with box model. 
 Normalized to incident pressure at each receiver and offset by 66 dB (data 

from Cox12).
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Each of the 15 patches was 127 mm wide. Absorption was provided by mineral wool 
76 mm thick, and absorption by varnished wood 25 mm thick. The BEM was a con-
ventional solution using Equation 8.2 and a 2D Green’s function for speed. For the 
patches of absorbent, the impedance was modelled using the Delaney and Bazley empirical 
formulation (see Section 5.4.1) with a flow resistivity of σ = 50,000 MKS Rayl m–1 
and a porosity of 0.98. Figure 8.12 shows a typical result from the measurements and 
predictions at 1.25 kHz. The BEM model agrees well with the measurement.

8.2 Kirchhoff

The rate-determining steps in carrying out BEM predictions are setting up and solv-
ing the simultaneous equations to determine the surface pressures. Consequently, 
faster methods for estimating the surface pressures have been derived and, for an 
appropriate approximation, it is possible to turn to optics. Optics uses the Kirchhoff 
approximation to determine the propagation of light through an aperture. The 
Kirchhoff approximation gives the wave function and its derivative across the aperture 
as unaltered from the incident wave. On the surround defining the aperture, both the 
wave function and its derivative are assumed zero. Adapted for scattering in acoustics, 
this approximation can be used to obtain the surface pressures and their derivatives, 
and yield reasonably accurate results for far field scattering. There are cases, however, 
when the method is not accurate, and so the approximation should be applied with care.

Consider a large planar surface, with uniform surface impedance across the whole 
surface. By considering the definition of pressure reflection coefficient given in Chapter 1, 
it would be anticipated that the pressure p on the surface at rs would be given by:
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Figure 8.12 Scattered pressure for normal sound incident on the hybrid surface shown. 
The shaded sections are constructed of MDF and the unshaded sections of 
mineral wool.

  BEM prediction and
  Measured (bottom figure after Xiao et al.13).
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 (8.22)

where R is the pressure reflection coefficient of the surface. Equation 8.22 is sometimes 
referred to as the Kirchhoff boundary condition. If the surface is completely non-
absorbing, R = 1, then the surface pressure is simply double the incident pressure. 
When the surface is completely absorbing, R = 0, then the surface pressure is just the 
incident pressure. It is necessary to assume that the diffuser is thin, so that the pressure 
from the sides of the surface can be neglected. It is also assumed that the surface is large 
compared to wavelength so that the pressure on the rear of the panel can be assumed to 
be zero. Then substitution of Equation 8.22 into Equation 8.2 leaves a straightforward 
numerical integration over the front face which can be rapidly and readily evaluated.

Problems arise when applying the Kirchhoff boundary condition when the surface 
has significant thickness, is small compared to wavelength, or has a surface impedance 
which varies rapidly (spatially). Problems also arise for oblique sources and receivers. 
In the following paragraphs, these problems are highlighted and discussed.

When a surface becomes very deep, then it is possible for second order reflections to 
occur. These second order reflections are not modelled by the Kirchhoff approximation. 
This is illustrated in Figure 8.13 for a couple of triangles. A simple Kirchhoff model 
would predict significant grazing energy reflected from this surface from the middle of 
the surface, because it only models the first order reflections which result in grazing 
angle propagation. In reality, however, second order reflections mean that this scattered 
energy returns back towards the source. To prevent this problem, the Kirchhoff 
boundary conditions should only be applied to surfaces whose surface gradients are not 
too steep. It is generally assumed that when the surface is steeper than about 30–40°, 
then the prediction method is likely to become inaccurate.

When the surface becomes small compared to wavelength, the surface pressures on 
the rear of the panel become significant, and the assumption of zero pressure on the 
rear can be inaccurate. It is the problem of assuming zero pressure on the rear of the 
panel that can cause the predictions to become inaccurate if the angle of incidence or 
reflection becomes too large for finite sized surfaces. Furthermore, inaccuracies can 
occur because the scattering from the edges is not modelled, as the pressure on the 
edges is also assumed to be zero. Neglecting edge diffraction will also be more 
problematical for oblique sources and receivers.

A surface which has a non-uniform surface impedance, where the impedance 
variation is rapid, can also cause problems. Consider the hybrid diffuser shown as an 
insert in Figure 8.14. The dark patches are absorbent (R = 0), and the light patches 
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Figure 8.13 Example of a second-order reflection from a set of triangles. This reflection 
will not be properly modelled by the Kirchhoff boundary conditions.
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reflective (R = 1). The figure also shows the surface pressures predicted by a BEM, and 
these are compared to the Kirchhoff boundary conditions. The Kirchhoff boundary 
conditions predict a rapidly fluctuating pressure distribution due to the arrangement of 
hard and soft patches. The more accurate BEM shows that mutual interactions across 
the surface significantly alter the pressure distribution, smoothing out the variation 
across the surface. This inaccuracy is not only a concern for the surface pressure 
calculation. If the far field polar response is considered, the Kirchhoff model in this 
case is most inaccurate.

Figure 8.14 Surface pressures for a BEM compared to the Kirchhoff boundary conditions. 
Hybrid surface made up of a periodic arrangement of hard (white) and 
soft (black) patches as shown. The pressure distribution is shown for a line 
through the middle of the surface as indicated:

  Kirchhoff boundary conditions;
  front pressure, thin panel BEM; and
  rear pressure, thin panel BEM.
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Figure 8.15 Pressure scattered from a plane surface. Comparing the accuracy of the 
 Kirchhoff solution to  BEM and  Experiment. Normalized 

to inci dent pressure at each receiver and offset by 65.5 dB for plotting (data 
from Cox12).
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The surface pressures are inaccurate, because there is an assumption in Equation 
8.22 that the surface is large in extent. Consequently, it is necessary to have a surface 
where the surface impedance spatial variation is large compared to wavelength; in other 
words, the patches of different impedances should be larger than half a wavelength. 
This is why the Kirchhoff boundary conditions fail for the case shown in Figure 8.14. 
This would also appear to rule out the use of the Kirchhoff boundary conditions for 
Schroeder diffusers, but fortunately the case of most Schroeder diffusers is less severe 
than that shown in Figure 8.14 – in particular, the well width is wider for commercial 
implementations, and good prediction accuracy can be achieved.

Given all the above reservations, the Kirchhoff solution is surprisingly good and 
useful for many acoustic diffusers, the exception being hybrid surfaces. For a plane flat 
surface, accurate results are achieved because the surface pressures are close to those 
given by the Kirchhoff boundary conditions. Figure 8.15 shows a typical example. 
Close to the specular reflection direction, the accuracy of the Kirchhoff solution 
improves as the frequency increases. As the frequency increases, the pressure on the 
rear of the panel decreases, as does the significance of edge diffraction and mutual 
interactions across the surface. For single curved surfaces better accuracy is obtained, 
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Figure 8.16 Pressure scattered from a Schroeder diffuser at a low frequency using two 
different prediction models:

  thin panel BEM and 
  Kirchhoff.
 Normalized to incident pressure at each receiver and offset by 49 dB for 

plotting (data from Cox12).
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Figure 8.17 Pressure scattered from a Schroeder diffuser at a mid-high frequency using 
two different prediction models:

  thin panel BEM and  Kirchhoff. Normalized to incident pressure 
at each receiver and offset by 48 dB for plotting (data from Cox12).
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although there is a tendency for the Kirchhoff solution to incorrectly smooth out local 
minima in the polar distribution.

To use the Kirchhoff solution for Schroeder diffusers, the model of a box with a 
spatially-varying front face admittance must be used as described in Section 8.1.6. 
As the Kirchhoff boundary conditions do not allow for mutual interactions across 
the surface, it is not completely successful in predicting the sound field. This is most 
obvious at low frequencies. Figures 8.16 and 8.17 contrast the prediction accuracy 
achieved at low and mid-high frequencies. Again the accuracy is best near the specular 
reflection angle. The Schroeder diffuser tends to scatter more sound energy to the side 
than a plane surface, and this tends to mask the decreasing accuracy with angle that is 
normally found with the Kirchhoff model. For oblique receivers, the predictions 
become less accurate as the Kirchhoff boundary conditions break down.

8.3 Fresnel

Once the Kirchhoff boundary conditions have been assumed, the resulting numerical 
integration can be simplified further. This can be done either to facilitate faster computa-
tion or to enable the derivation and understanding of simple design principles. The 
Kirchhoff boundary conditions (Equation 8.22) are substituted into the Helmholtz–
Kirchhoff integral equation (Equation 8.2). The usual relationship between surface 
admittance and pressure reflection coefficient, as given in Chapter 1, is also used. 
(Remembering that in this case the normal to the surface is pointing outwards, as is 
usually the case with BEM models, whereas surface admittance is normally defined 
with an inwardly pointing normal.) Combining these equations gives the following 
formulation:

 (8.23)

where ψ is the angle of incidence. It is assumed that the receiver is sufficiently far from 
the surface so that the differential of the Green’s function can be approximately given by:

 (8.24)

where θ is the angle of reflection. This relation is true for both the 2D and 3D Green’s 
functions. Combining Equations 8.23 and 8.24 gives:

 (8.25)

Fresnel diffraction is a method normally designed to work with non-absorbing panels, 
i.e. R = 1. In that case Equation 8.25 simplifies further:

 
(8.26)

For simplicity, just the 3D case will be considered, although the findings below are 
readily translated into a 2D representation. Consider a point source some way from a 
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planar diffuser, so the incident pressure pi is given by the Green’s function. It is necessary 
to come up with approximations for the distances |rs – r0| and |r – rs|. By considering 
the geometry shown in Figure 8.1 with the diffuser in the y = 0 plane, and a simple 
binomial expansion, it is possible to show that these distances are given by:

 (8.27)

 (8.28)

If Equations 8.27 and 8.28 are substituted into Equation 8.26, the following expression 
is obtained for the scattered pressure:

 (8.29)

It has been assumed that the variation in |rs – r0| and |r – rs| in the denominator of the 
integral is negligible compared to the variation in the phase of the complex exponential; 
an assumption often applied in optics. This enables the denominator of the Green’s 
function to be moved outside the integral. Similar arguments allow the cos(θ) factor 
to be moved outside the integration as well.

The phase terms of the complex exponentials are quadratic in xs and zs and so it is 
not possible to provide an analytical solution to this integration. In the past, this was 
overcome by using the Fresnel integrals, which were numerical solutions of the above 
functional form, which were readily available in tables. Nowadays, however, there is 
little point in using Fresnel integrals as computer power has increased to such an extent 
that the Kirchhoff approximation might as well be used. There are, however, some 
neat and simple short cuts to calculating the above integration suggested by Rindel,14 
which could be used if speed is at a premium. The Fresnel solution does, however, lead 
the discussion to far field prediction models, which are key to understanding diffuser 
design. Consequently, the discussion now continues with a far field solution.

8.4 Fraunhofer or Fourier solution

This solution is only valid in the far field, when both source and receiver are some 
distance from the surface. Then it is possible to neglect the quadratic terms in the 
integration in Equation 8.29 to obtain:

 (8.30)

For a planar surface, this then gives an analytical equation that can be solved. Assuming 
the panel is 2a long in the x-direction, and 2b long in the z-direction, the scattering is 
given by two sinc functions:
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 (8.31)

where sinc(θ) = sin(θ)/θ. (Note some definitions of sinc() contain an explicit factor 
of π, but that is not being used here.) This is a result familiar from optics and signal 
processing. The Fourier transform of a rectangular or top hat function gives a sinc() 
response. Equation 8.31 enables quick estimations of the far field scattering from a 
rigid flat surface and is very fast.

While the above case is interesting, the Fraunhofer solution is arguably going to be 
most useful in analyzing surfaces which do not have uniform reflection coefficient. The 
most obvious example is the Schroeder diffuser which can be modelled as having a 
spatially-varying admittance on the front surface of a box. To carry out this analysis, 
it is necessary to return to Equation 8.25 and to apply the distance approximations 
outlined above. For conciseness, consider just the scattered pressure:

 (8.32)

To simplify the analysis, just normal incidence sound will be considered; furthermore, 
it will be assumed that the surface admittance variation is in the x-direction only. It is 
possible to keep all the terms included, but the equations become rather long and the 
key points of the analysis are lost in a forest of symbols. With these simplifications, it 
can be shown that the scattering is given by:

 (8.33)

The term with the [cos(θ) – 1] term is usually less than the term with the term [cos(θ) 
+ 1], especially away from grazing angles. Consequently, it can be ignored. This leads 
to a scattered pressure of:

 (8.34)

This is essentially the equation used by Schroeder in the design of phase grating diffusers, 
although he derived his equations following a different philosophy. Furthermore, there 
are some additional factors outside the integral. Several authors neglect the [cos(θ) + 1], 
and this simplified form is often called a Fourier theory because the integration is 
essentially a Fourier transform.
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8.4.1 Near and far field

As the analysis is now considering a far field prediction model, it is expedient to define 
what the near and far field mean. Unfortunately, with diffusers the location of the near 
and far field is not as clear cut as for simple pistonic radiators, which is the case most 
often cited in text books. The far field is defined as the region where the difference 
between minimum and maximum path lengths from the panel to the receiver is small 
compared to the wavelength. In this region, all points on the panel are effectively at the 
same distance from the receiver.15 This is illustrated in Figure 8.18. For diffusers there 
is an added complication that both the source and receiver need to be considered but 
to simplify discussions it will be assumed that the source is always at infinity. There is 
also a second requirement for the far field, which is that the receiver distance should 
be large compared to wavelength. This is, however, not usually the critical requirement 
for the geometries that occur with diffusers. Frequencies where the wavelength is large 
enough for this to be a consideration are usually below the lower frequency limit at 
which surface roughness effects are important. This can be important when receivers 
are close to diffusers, as might happen in poorly designed small rooms, as discussed 
in Chapter 2.

In the far field, the polar response is independent of the receiver distance from the 
surface – this makes it a useful place to test diffusers. By considering the geometry in 
Figure 8.18 for a planar surface, it is possible to derive the following formulation for 
an on-axis receiver to be in the far field:

 (8.35)

Unfortunately, this far field formulation is not applicable to the case of oblique sources 
and receivers. As Figure 4.15 demonstrated, the true far field is only achieved for many 
diffusers when the receiver radius is many hundreds of metres! For further discussion 
of this issue, see Section 4.1.1.
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Figure 8.18 Standard construction for determining near field extent.
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8.4.2 Fraunhofer theory accuracy

Provided sources and receivers are in the far field, for plane and Schroeder surfaces 
the accuracy of the Fraunhofer theory is similar to the Kirchhoff solution. So if the 
results in Figure 8.15 were predicted with the Fraunhofer solution, similar results to the 
Kirchhoff solution would be obtained. Consequently, in the far field the limiting factor 
for accuracy is the Kirchhoff boundary conditions. Where the Kirchhoff model fails, at 
low frequencies and for oblique sources and receivers, so does the Fraunhofer method.

Differences between Kirchhoff and Fraunhofer solutions occur when the receiver is 
in the near field, and this is true for nearly all diffusers. Consequently, high frequency 
predictions can become inaccurate as the near field extends further at higher frequency 
– a fact that can often surprise the unwary! Figure 8.19 shows the scattering from an 
N = 11 Schroeder diffuser in the near field. It is assumed the BEM model is accurate, 
and consequently this shows that the inaccuracies in the Fraunhofer model are 
significant at this distance. Figure 8.20 shows the same situation, but now the receiver is 
50 m from the diffuser, which is safely in the far field. At these distances the Fraunhofer 
solution is as accurate as the Kirchhoff model. It is not often, however, that application 
realistic sources and receivers are this far from the panel. In diffuser design, however, 

   10    20    30(dB)
−90

−60

−30

0

30

60

90

Figure 8.19 Scattered pressure from a surface. Comparison between  BEM and 
 Fraunhofer solution in the near field. Normalized to incident pressure 

at each receiver and offset by 49.6 dB for plotting (data from Cox12).
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Figure 8.20 Scattered pressure from a surface. Comparison between  Kirchhoff and 
 Fraunhofer solution in the far field. Normalized to incident pressure 

at each receiver and offset by 77.6 dB for plotting (data from Cox12).
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the usual assumption is that a good far field diffuser will also work in the near field, 
as discussed in Chapter 4.

8.5 Finite difference time domain (FDTD)16

Finite difference time domain (FDTD) is a widely used simulation technique in electro-
magnetism and is becoming increasingly popular in acoustics. Both easy to understand 
and implement, it can cover a wide frequency range within a single prediction. It uses 
volumetric rather than surface meshes and can give accurate predictions of scattering.17 
(Chapter 2 used FDTD to generate pictures of wavefronts reflecting from various 
surfaces.) Figure 8.21 shows the scattering from a Schroeder diffuser predicted using 
three different models and illustrates that, especially near the specular reflection angle, 
the FDTD gives accurate results. By directly giving the impulse response, it is natural 
to evaluate the temporal dispersion diffusers generate using this method, however the 
interpretation of this data is not yet well established. Furthermore, one of the biggest 
strengths of FDTD, the simulation of systems that are time-variant, still remains 
unexplored.

The main strength of FDTD is that it is an extremely intuitive technique so users can 
easily write and debug their own codes. Its main weakness is that the entire comput-
ational domain must be meshed, and the spacing of the mesh must be small compared 
to the smallest wavelength and the physical features being modelled. Consequently, a 
very large system of equations must be considered which results in very long solution 
times. Near to far field transformations combined with absorbing boundary conditions 
can help to overcome this problem in some particular cases. The first technique (near to 
far field transformation) requires some post processing, and the second one (absorbing 
boundary conditions) can complicate the code, losing the simplicity of the prediction 
model.

In the case of acoustics, the conservation of momentum and continuity equations 
are transformed to central-difference equations, obtaining update formulations for the 
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Figure 8.21 Scattered pressure level from a quadratic residue diffuser in the far field for 
three prediction models:

  FDTD;
  BEM; and
  FEA. 
 Three one-third octave bands as labelled on charts.
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sound pressure and particle velocity. The equations are solved in a leapfrog manner; in 
other words, the sound pressure is solved at a given instant in time, then the particle 
velocity field is found at the next instant in time, and the process is repeated over and 
over again.

In 1966, Yee18 described the first space-grid time-domain numerical technique in 
electromagnetism. Meloney and Cummings19 adapted the method for acoustics based 
on the conservation of momentum and continuity equations:

 (8.36)

 (8.37)

where p is the sound pressure, ),( yx uuu =  is the particle velocity vector, 0 is the density 
of the medium and Ke )/1( 2

0 c=  is the bulk modulus of the medium.
For the sake of simplicity, only 2D schemes are considered here. Therefore, Equations 

8.36 and 8.37 can be written as follows

 (8.38)

 
(8.39)

 (8.40)

The sound pressure and particle velocity are considered at the points illustrated in 
Figure 8.22. Superscripts represent the time index, and the subscripts the spatial indices, 
namely:

 
(8.41)

 
(8.42)

 
(8.43)

where Δx and Δy are the spatial interval in the x and y directions and Δt is the time 
interval between successive calculations.

The spatial grids are staggered in space to minimize the significance of higher order 
terms when discretizing spatial and time derivatives. For instance, the mesh for the x 
component of the particle velocity is shifted a distance of Δx/2 with respect to the pressure 
mesh. The same goes for the time mesh; the particle velocity meshes are shifted Δt/2 in 
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time with respect to the pressure mesh. This arrangement is termed a leapfrog scheme.
Then, the spatial and time derivatives of pressure and particle velocity can be approx-

imated by central finite difference equations. For instance, the pressure derivative with 
respect to x is given by:

 
(8.44)

Using this approach, Equations 8.41–8.43 can be transformed into a set of update 
formulations which are used to obtain pressure and particle velocity:

 (8.45)

 (8.46)

 
(8.47)

All particle velocity computations are calculated and stored in memory for a particular 
time point using the previously stored values of the pressure. Then all the pressure 
computations are calculated and stored in memory using the previously calculated 
values of particle velocity. The cycle can be repeated as many times as needed to explore 
the changing sound field over time.
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8.5.1 Stability: spatial and time steps

To ensure numerical convergence, the time step should be small enough to describe the 
wave propagation. The limit relationship between the spatial and time steps is given by 
the so-called Courant number, s, which in 2D can be defined as follows:

 (8.48)

In addition, the maximum element size used in discretization is determined by the 
frequency, with at least 10 elements per wavelength being required for adequate 
accuracy. Thus, at high frequencies, a large numerical problem has to be solved. For 
instance, in room acoustics the upper limit of interest for predictions is often the 5 kHz 
one-third octave band. The highest frequency in the band is about 5,500 Hz, which 
leads to a spatial discretization step of 6 mm and a sampling frequency of 80 kHz to 
fulfil the Courant criteria.

8.5.2 Including objects in the integration area

Early papers in electromagnetism simulated objects by simply making the propagation 
media constants space dependent. The best approaches for modelling acoustic objects 
such as diffusers and absorbers are still being developed. Chapter 5 discussed time 
domain approaches to modelling sound propagation through porous absorbers, which 
might offer one approach. In the case of walls, there are several approaches depending 
on the different models used to simulate the propagation of vibrations in solids.20 
Drumm21 coupled acoustic FDTD and finite element analysis (FEA) models to predict 
surface reflections; although the use of FEA significantly increases computation time.

A perfectly rigid wall is the easiest case to deal with and can be modelled by setting 
some of the particle velocity points in the mesh to zero for the whole calculation run. 
Another possibility is to use an impedance boundary condition.22 Assuming a locally 
reacting boundary, the particle velocity normal to the surface and the pressure can 
be related by the acoustic impedance. The simplest case is to assume the boundary 
is purely resistive. A more correct time-domain representation of a complex surface 
acoustic impedance is problematic because the impedance may not always be a causal 
function.23 (Causal in this context means that knowledge of future sound field values 
are required before they are available.) One solution to this is to numerically fit an 
implementable filter which approximates the true impedance function. It is often the 
case that the true broadband impedance function is unknown anyway. For instance, 
it is possible that only the real part is known over a restricted frequency range from 
absorption coefficient values. In this case, the unknown parts can often be chosen 
to ensure the surface impedance function is causal. It is also important that the 
impedance function is also short in time to minimize the storage requirements for 
surface pressures and velocities. Using pressure reflection coefficients may offer an 
alternative approach with guaranteed causality,24 however the reflection coefficient 
which should be used depends on the incident sound field and a physically correct 
scheme has yet to be formulated. Renterghem et al.25 demonstrated that simple 
complex impedances can be modelled in a FDTD scheme using a mass-damper-spring 
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equation. Work continues to find a more accurate way of representing surfaces 
without a high computational cost.26

A final point of note is that when geometries are not aligned with the axis, for 
instance if there are curved surfaces, then conformal methods are required which are 
much more complicated.

8.5.3 Excitation

There are several ways to introduce sources into the mesh. In the first papers in 
electromagnetism, the excitation was introduced as an initial condition in the whole 
integration area. Researchers focussed on the scattering caused by perfect conductors, 
equivalent to rigid walls in acoustics, and so they took a plane wave as an initial 
condition and observed how it was transformed by the particular objects included in 
the simulation domain. Another possibility is to include one or more point sources 
within the mesh. This means that the evolution of at least one point of the mesh will 
not be given by the formulations given previously, but by an external driving function 
g(t). For instance:

 
(8.49)

Sources defined this way reflect the sound travelling in the mesh. To avoid these 
reflections, transparent sources must be used.27

There are many options for the source function g(t). Gaussian pulses might be used 
because of their wide frequency range. Ricker wavelets (also known as Mexican-hat 
wavelets) are extremely useful because they do not introduce large-amplitude frequency 
components near D.C., which can be resonant with the mesh.

A Ricker wavelet is given by:

 (8.50)

where fcent is the central frequency. In fact, the Ricker wavelet is nothing but the second 
derivative of a Gaussian function. Figure 8.23 shows the time and frequency response 
for these wavelets.

More complicated excitations have also been proposed to study scattering, mainly in 
the field of electromagnetism, in order to avoid the use of time windowing to separate 
incident and reflected waves. These techniques are known as the total scattered or pure 
scattered field formulations. Both methods produce the same results and are equivalent 
to a subtraction between a normal calculation (with all the scatterers included in the 
integration area) and one without scatterers.

Methods for simulating directional sources needs more development. Recently, 
Escolano28 has presented a simple way to obtain arbitrary directivity patterns in the far 
field using a set of point sources.
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8.5.4 Anechoic boundary conditions

One of the main applications of FDTD is the analysis of scatterers. Usually an anechoic 
environment is desired. In order to do that, one can define the end of the integration 
area with an impedance equivalent to the characteristic impedance of air. In doing so, 
and due to inevitable small errors due to discretization, the absorption of the termi-
nations will not be complete. To reduce the reflected waves further requires the used of 
perfectly matched layers (PMLs).29 This technique defines a lossy medium in locations 
proximate to the boundaries, which in turn implies the modification of Equations 8.38–
8.40 to include attenuation factors for each dimension considered (γx and γy), i.e.:

 (8.51)

 (8.52)

 (8.53)

 (8.54)
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where the sound pressure has been split into two additive components px and py that 
have no physical sense. The attenuation factors are zero inside the integration area, and 
are gradually increased in areas near the boundaries using the following expression:

 (8.55)

where x0 is the initial point in the PML, xmax is the last point of the PML, n is a number 
between 2 and 3, and γx max is the maximum value of the attenuation factor. All these 
parameters should be optimized with some previous calculations.

Figure 8.24 illustrates the disposition of the different PMLs used in 2D simulations. 
At both the left and right sides of the grid there are x-direction PMLs (γx ≠ 0, γy = 0) 
At both the upper and lower sides of the grid there are y-direction PMLs (γx = 0, γy 

≠ 0). At the four corners of the grid there is an overlap of two perpendicular PMLs. 
This scheme ensures the reflected sound is attenuated by at least 60 dB relative to the 
incident sound, provided the PML parameters are chosen correctly.

8.5.5 Near to far field transformation

One of the main weaknesses of FDTD is that the entire computational domain must be 
meshed. If the aim of a simulation is to obtain the sound pressure reflected by a scatterer 
in the far field, very large domains must be considered increasing the computational 
cost. To overcome this problem near field to far field transformations (NFFFT) should 
be used. The standard transformation is based on the contour equivalence theorem. In 
this approach, the scattered pressure field along a closed virtual contour surrounding 
the structure of interest is computed via FDTD and integrated over the entire contour to 
provide the far field response. Since the virtual surface is independent of the geometry of 
the scatterer which it encloses, it is usually chosen as a rectangular shape to conform to 
the standard Cartesian FDTD grid. As there are no sources outside the transformation 
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Figure 8.24 Structure of a two-dimensional PML with a test specimen in the middle.
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contour, the pressure at a far point can be computed via the Helmholtz–Kirchhoff 
integral, Equation 8.2; for further details see Taflove.30

8.6 Other methods

8.6.1 Time domain BEM

It is possible to formulate a transient boundary element model which operates in the 
time domain. The Kirchhoff integral equation and its normal derivative are used, 
instead of the time invariant frequency domain version, to derive surface and external 
point pressures. To solve the time dependent form the surface is again discretized. It can 
be shown from the time dependent integral equation31–33 that the velocity potential and 
its derivative on the surface can then be represented by the incident velocity potential 
from the source plus contributions from the other elements at the current and previous 
times. Consequently, if initial silence is assumed, it is possible to formulate a system 
of equations for the velocity potential and its derivative that is marched on in time to 
obtain the full time history of the pressure on each element. Once the surface pressures 
are known, these can be propagated to find the pressure versus time response at external 
receiver points.

As with the constant frequency BEM, the underlying integral equation is known to 
possess non-unique solutions at certain frequencies. These happen for fully enclosed 
surfaces and are physically interpreted as cavity resonances. Despite the fact that these 
should be precluded by the initial conditions, they can be excited by numerical error 
and corrupt the external solution. This can be overcome by using the combined field 
integral equation.32

The marching on in time is an iterative process and therefore has potential for 
divergence. Although the actual physical system being modelled is stable, numerical 
inaccuracies in the discretized equations can, and often do, result in instability. The 
interaction matrixes have to be integrated to a high accuracy, particularly for complex 
real-life surfaces. The instabilities and high computational cost have prohibited 
widespread use of the time domain BEM.

The method has potential advantages over the constant frequency methods in that 
the impulse response may be generated. There is no need to separately calculate the 
response at many different frequencies and then combine these together to get the full 
frequency response, and from there the impulse response. However, the model needs 
further development, particularly for non-rigid bodies, as the formulation of surface 
admittance in the time domain is ill-defined.

8.6.2 Finite element analysis

Finite element analysis (FEA)34 uses volumetric rather than surface meshes and can give 
accurate predictions of scattering.17 Figure 8.21 shows the scattering from a Schroeder 
diffuser predicted using FEA and illustrates that, especially near the specular reflection 
angle, the model gives accurate results. As a mesh is formed in a space rather than 
just on the surface, as was done for BEM, the method yields a much larger system of 
equations. However, by applying a NFFFT, it is possible to get away with meshing only 
the volume close to the surface.

FEA is much slower than a BEM when dealing with exterior domain acoustic 
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problems such as the scattering from diffusers. Unlike FDTD, FEA does not produce 
a simple set of equations which compensate for the computational burden of using a 
volumetric mesh. Where FEA does have advantages is where there is fluid and structural 
motion. For example, it can model the behaviour of a non-rigid diffuser which exhibits 
structural vibration. As this sort of diffuser is currently rare, and structural motion is 
usually deliberately avoided in diffuser design, the use of FEA for scattering is not the 
most efficient method.

8.6.3 Edge diffraction models

Edge diffraction models can be used to produce the scattering from wedges and simple 
shapes. For a plane rigid surface, the total field can be seen as a sum of the direct sound, 
specular reflections and edge diffraction components.35,36 Consequently, it is possible 
to solve the scattering problem by integrating over the edges present in a diffuser. 
This type of method becomes rather slow if high orders of edge diffraction need be 
considered, as would be the case for complex surfaces. It does, however, directly lead to 
a sampled impulse response, and consequently is particularly useful where broadband 
time domain scattering needs to be calculated, or if the results are to be integrated into 
geometric room acoustic models.37

8.6.4 Wave decomposition and mode matching approaches

It is possible to carry out a decomposition of the acoustic wave knowing the spatial 
distribution of the diffuser. Strube38–40 used this approach to solve the scattering 
from Schroeder diffusers. In Chapter 7 an example of this type of theory was used to 
explain the absorption from Schroeder diffusers. For that reason, this type of theory 
is only briefly described here. In this theory it is assumed that the diffuser structure 
is periodic and then it is possible to decompose the scattered wave into the different 
diffraction lobes using a Fourier decomposition. Then, it is possible to set up and solve 
simultaneous equations into the diffraction lobe scattered amplitudes. These methods 
offer an alternative approach to BEMs, but BEMs are considerably more useful as they 
can be applied to arbitrary surfaces. The modal decomposition models are particularly 
powerful for large arrays of periodic structures, as the size of the problem to be solved 
is considerably smaller under this formulation than with a BEM model.

8.6.5 Random roughness

In the theories used so far, a deterministic approach has been taken, with the surface 
geometry and impedance properties being modelled exactly. For large-scale surfaces 
with small roughness this can turn out to be a very inefficient approach for carrying 
out predictions. In that case, it may be advantageous to use a statistical approach, 
whereby the surface is only determined by some shape statistics, such as the mean 
square surface height and the slope probability function.41 In diffuser design, these 
theories are not often useful because the size of the surface roughness is large and the 
sample of roughness that might be used is small in width, and so a few shape statistics 
are not sufficient to accurately predict the scattering from the surface. This is illustrated 
in Figure 8.25. The top shape is meant to generically represent deliberately designed 
diffusers, where the scale of the roughness is deep and relatively slow varying. In this 
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case, the small number of bumps on the surface will dominate the scattering in such 
a way that a statistical approach is not applicable. The bottom line in the figure, 
however, represents a more randomly rough surface, for which the theories based on a 
few shape statistics may be more applicable. To put it another way, there needs to be a 
sufficiently wide sample of the surface roughness for the shape statistics to be properly 
representative of the surface.

For accidental surface roughness, this statistical approach is more useful, especially 
as it may be impossible to get the exact geometry of all shapes in existing structures. 
Random rough theories are probably most commonly used in underwater acoustics, 
although both Cox and D’Antonio42 and Embrechts et al.43 have applied statistical 
approaches to diffuser scattering. In the case of Cox and D’Antonio, this was investigated 
with respect to the design of fractal diffusers. For Embrechts et al. a statistical approach 
was taken to investigate scattering coefficients from surfaces. These approaches usually 
assume the Kirchhoff boundary conditions, and so an additional limitation is that the 
surface gradients must not be too steep, otherwise second and high order reflections 
become important, and the statistical approach breaks down.

8.6.6 Boss models

Boss models are hybrid approaches.41 They use a deterministic solution for the scattering 
from a single element – examples include cylinders and hemispheres – and then model 
the distribution of the elements in a statistical manner. Twersky developed the best 
known approach.44 This theory allows high order scattering, across all frequencies, 
both in 2D and 3D, to be considered. Up to date versions of the theory also enable 
scattering from different sized bosses. One of the problems with applying this model 
is to represent complex surfaces by a series of regular sized bosses. In some cases this 
might be easy, but in the case shown at the bottom of Figure 8.25 this would be rather 
tricky. Torres et al.45 have applied a boss model to predict scattering by hemispherical 
surface elements in auditoria.

8.7 Summary

In this chapter, some commonly used prediction models for scattering have been 
outlined and the necessary equations developed. These theories will be drawn upon in 
the design of diffusers, which is the subject of next three chapters.

Figure 8.25 Two different randomly generated surfaces.
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9 Schroeder diffusers

One of the most significant occurrences in diffuser design, if not the most important 
event, was the invention of the phase grating diffuser by Schroeder.1,2 Apart from very 
simple constructions, previous diffusers had not dispersed sound in a predictable manner. 
The Schroeder diffuser offered the possibility of producing ‘optimum’ diffusion, and 
also required only a small number of simple design equations. D’Antonio and Konnert3 
presented one of the most readable reviews examining the far field diffraction theory 
underpinning Schroeder’s number theoretic surfaces; they experimentally measured 
performance and described applications in critical listening environments. Most 
crucially, they commercialized Schroeder diffusers and so made them widely available. 
Since the publication of Reference 3, there have been many new developments which 
have not been brought together and documented in one place. Therefore, the intention 
of this chapter is to tell the whole story of Schroeder diffusers. Much of this chapter 
was featured as a review article in the journal Building Acoustics.4

The chapter will start by outlining a largely qualitative view of the diffuser, how it 
works and the basic design principles. Following this, a more detailed quantitative and 
theoretical analysis of the diffuser will be given. In these descriptions, the ingenuity 
of the original design concept should become apparent. In addition, more recent 
developments will be presented, illustrating weaknesses in the original design which can 
be overcome by modifying the design procedure, sometimes using number theory – one 
of Schroeder’s favourite subjects. Finally, it will be shown that better phase gratings 
can be made using an optimization procedure.

9.1 Basic principles

The top row of Figure 9.1 shows single plane or 1D Schroeder diffusers. They consist 
of a series of wells of the same width and different depths. The wells are separated by 
thin fins. The depths of the wells are determined by a mathematical number sequence, 
such as the quadratic residue sequence. Single plane diffusers cause scattering in one 
plane, in the other direction, the extruded nature of the surface makes it behave like a 
plane surface. Because of this, it is normal to just consider a cross section through the 
diffuser (Figure 9.2) which contains the plane of maximum dispersion. Multi-plane 
diffusers are possible, as shown in Figure 9.1 and are discussed later in Section 9.7.

Consider a mid-frequency plane wave incident onto the diffuser. Plane wave pro-
pagation within the wells in the y-direction occurs. The plane waves are reflected from 
the bottom of the wells and eventually re-radiate into the space. For now, it will be 
assumed that there is no loss of energy. The pressure at a point external to the diffuser is 
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therefore determined by the interference between the radiating waves from each well. 
All these waves have the same magnitude but a different phase because of the phase 
change due to the time it takes the sound to go down and up each well. Consequently, 
the polar distribution of the reflected pressure from the whole surface is determined 
by the choice of well depths. Schroeder showed that by choosing a quadratic residue 
sequence, the energy reflected into each diffraction lobe direction is the same. In 
Figure 9.3 an example of the reflection from the surface is given, as calculated by the 

Figure 9.1 Various Schroeder diffusers. Top row: single plane or 1D diffusers made 
from wood, moulded plastic and plexiglass (from left to right). Bottom row: 
2D diffusers made from wood, expanded polystyrene, and Glass Reinforced 
Gypsum (GRG) (from left to right).

w

dn

y

x

Figure 9.2 A cross-section through an N = 7 Quadratic Residue Diffuser (QRD®).
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simplest and most approximate theory at a frequency where optimum diffusion is 
achieved. Eleven lobes of the same energy are found in this case. These lobes are 
generated because the surface is periodic.

9.2 Design equations

For the design theory to be correct, plane wave propagation within the wells must 
dominate. Consequently, an upper frequency for the diffusion to follow the simple 
design principles can be found from:

 (9.1)

where λmin is the minimum wavelength before cross-modes in the wells appear, and w 
is the well width. Above this limit dispersion will continue to occur be cause these are 
complicated structures. Consequently, this is just a limit of applicability of a theory, 
and not necessarily an upper limit for the diffusion quality.

This need for plane wave propagation explains the need for fins to separate the 
different wells. The fins should be as narrow as possible, but not so narrow that they 
vibrate and cause significant losses.

A quadratic residue sequence is the most popular mathematical sequence used to 
form the well depths. The sequence number for the nth well, sn, is given by:

 (9.2)

where modulo indicates the least non-negative remainder and is often written as mod 
for short. N is the number generator which in this case is also a prime and the number of 
wells per period. For example, one period of an N = 7 QRD has sn = {0, 1, 4, 2, 2, 4, 1}.
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Figure 9.3 Scattered level from a Schroeder diffuser (left) and a plane surface (right) of the 
same size.
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Schroeder diffusers work at integer multiples of a design frequency, f0. The design 
frequency is normally set as the lower frequency limit. However, it is more convenient 
to present formulations in terms of the corresponding design wavelength, λ0. The depth 
dn of the nth well is determined from the sequence via the following equation:

 (9.3)

The well depths consequently vary between 0 and approximately λ0/2. The design 
frequency is not the lowest frequency at which the surface produces more dispersion 
than a plane surface, it is just the first frequency at which even energy diffraction lobes 
can be achieved. It has been shown that Schroeder diffusers reflect differently from a 
plane hard surface an octave or two below the design frequency.5,6

9.3 Some limitations and other considerations

Given the above equations, it is possible to design a diffuser to a desired bandwidth. 
There are some subtle details in the design that must be heeded to achieve the best 
possible diffusion.

If the period width (Nw) is too narrow, then at the first design frequency there is 
only one major lobe, and so this concept of even energy lobes is rather irrelevant. 
The period or repeat width is often significant in determining performance, especially 
when the repeat width is small. This is illustrated in Figure 9.4 where the scattering 
from diffusers of different period widths are shown. These are both N = 7 QRDs with 
a design frequency of 500 Hz. The well widths are 3 and 9 cm, which means that the 
period widths are 21 and 70 cm respectively. The number of periods for each diffuser 
is set so that the overall widths of the devices are the same for a fair comparison. For 
the narrow wells and period width, shown right, the low frequency limit of diffusion is 
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Figure 9.4 The pressure scattered from two QRDs at 1,000 Hz.
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Schroeder diffusers 293

determined by the period width and not by the maximum depth. This is illustrated in 
Figure 9.5, where the normalized diffusion coefficient versus frequency is shown. The 
narrow well width diffuser only starts causing significant diffusion over and above the 
plane surface at 1.5 kHz, which is three times the design frequency. This is roughly 
the frequency at which the first grating lobe appears and so is the lowest frequency 
where significant scattering in oblique directions is achieved. For the wide well width, 
the first grating lobe appears below the design frequency and so significant diffusion 
is created at 500 Hz and above.

For the diffuser to behave ‘optimally’, the device must be periodic. The lobes are 
generated by the periodicity of the surface. Without periodicity, all that the design 
equations portray is the fact that in certain directions the scattering will have a similar 
level. This is illustrated in Figure 9.6 where the scattering from one and multiple 
periods of a diffuser is compared. The directions of similar level are marked. For the 
periodic cases, the directions of similar level align with the lobes. For the single period 
case, they are just points of identical level in the polar response; the points do not 
align with the lobes. In this case, saying the levels are identical in some directions is 
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Figure 9.5 Normalized diffusion spectra for two QRDs showing that the lowest frequency 
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than surface depth. The design frequency was 500 Hz.
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almost a meaningless statement, because in most polar responses there will be angles 
where the scattering is identical to other angles. Consequently, using one period of 
the device spoils the point of using the quadratic residue sequence. Using one period 
therefore causes problems with the mathematical make-up and definition of Schroeder 
diffuser. However, the scattering from a single period diffuser is often more uniform 
than a periodic device, as Figure 9.6 shows. This issue will be returned to later when 
modulation is discussed.

If too many periods are included then the grating lobes become rather narrow; this 
leads to uneven scattering because there are large nulls present (see Figure 9.6). It must 
be remembered, however, that manufacturing and installation constraints are likely 
to mean that a narrow base shape with a large number of repeats is going to be the 
cheapest to build. Periodicity might also be preferred visually.

The points made in the last three paragraphs mean that the best design is one with 
a small number of periods, say five, to ensure periodicity, but with the diffraction 
lobes not too narrow. The period width must be kept large to ensure a large number 
of grating lobes, which then implies a reasonably large number of wells per period. 
Making the well width wide does not work as it can cause problems with specular-
like reflections at high frequencies. Alternatively, modulation schemes can be used as 
discussed later in the chapter.

From the maximum frequency calculated from Equation 9.1, it might appear 
as though a Schroeder diffuser should have the narrowest wells possible to get the 
widest frequency range, but difficulty/cost of manufacture and absorption need to 
be considered. As the diffuser wells become more narrow the viscous boundary layer 
becomes significant compared to the well width and the absorption increases (see 
Section 9.8). Consequently, practical well widths are at least 2.5 cm, and usually around 5 cm.

The choice of prime number is limited by manufacturing cost, low frequency 
performance and critical frequencies. For a given maximum depth dmax, the design 
frequency achieved is:

 (9.4)

where smax is the largest number in the quadratic residue sequence. The ratio of 
the largest sequence number to the prime number determines the low frequency 
efficiency of the device.7 To take two examples: N = 7, smax/N = 4/7; N = 13, smax/N = 
12/13. Consequently, an N = 7 diffuser will have a design frequency nearly an octave 
below that of an N = 13 diffuser. It is possible, however, to manipulate some sequences 
and increase the bass response. A constant phase shift can be introduced to yield a 
better bass response:

 (9.5)

where m is an integer constant. Consider two N = 13 diffusers:

m=0, sn = {0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1}, smax/N = 12/13.

m=4, sn = {4, 5, 8, 0, 7, 3, 1, 1, 3, 7, 0, 8, 5}, smax/N = 8/13.
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Consequently, the design frequency has been lowered by two-thirds by this simple 
manipulation. It must be remembered, however, that this increased performance may 
not be realized if the repeat width is too narrow.

For a quadratic residue diffuser, critical frequencies occur at mNf0 where m = 1, 2, 
3 .... These are frequencies where the diffuser behaves like a plane surface because all 
the wells re-radiate in phase. This occurs when all the depths are integer multiples of 
half a wavelength. Figure 9.5 illustrates such a critical frequency happening at 3.5 kHz 
in the diffusion spectrum for the narrow diffuser. Figure 9.7 shows the scattering at this 
frequency. To avoid these critical frequencies, it is necessary to place the first critical 
frequency above the maximum frequency of the device defined by Equation 9.1, i.e.:

 (9.6)

9.4 Sequences

9.4.1 Maximum length sequence diffuser

Schroeder began his work by investigating maximum length sequences (MLSs).1 Figure 
9.8 shows one period of such a surface based on the sequence {0, 0, 1, 0, 1, 1, 1}. 
Schroeder chose an MLS because it has a flat power spectrum at all frequencies 
(except DC). There is a close relationship between the power spectrum and the surface 
scattering, indeed it is well established in optics that the far field scattering can be found 
by applying a Fourier transform to the ‘surface’. Equation 8.34 gave the scattering 
in terms of the pressure magnitude |p| from a surface when the Fraunhofer far field 
approximations are made:

 (9.7)
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where R(x) is the pressure reflection coefficient; θ the angle of reflection; A is a constant; 
ψ the angle of incidence, and k the wavenumber.

This theory is based around representing the complex diffuser shape by a simple 
box with a variable admittance on the front face – the admittance being determined 
by considering the plane wave propagation in the wells. This is essentially the same 
theory used originally by Schroeder, except for the term in [cos(θ) + 1]. This extra term 
is an extension that makes the optical Fraunhofer theory more applicable for oblique 
incidence and reflection. For convenience and compatibility with previous work, this 
term will be ignored:

 (9.8)

Equation 9.8 can be interpreted as a Fourier transform, but the transform is in the 
variable kx and transforms into [sin(θ) + sin(ψ)] space (rather than the more familiar 
time to frequency transformation). If the reflection coefficients R(x) are chosen to have 
a flat power spectrum with respect to kx, then the amplitude is constant with respect 
to the transform variable [sin(θ) + sin(ψ)]. This does not relate to a constant scattering 
in all directions, as the transform variable is not a simple function of θ and ψ; instead 
even energy lobes are achieved.

If the surface is assumed to be periodic, then there will be scattering directions where 
spatial aliasing produces grating (diffraction) lobes. These are directions where the path 
length difference from the source to receiver via parts of the panel exactly one period 
apart, is an exact multiple of a wavelength. This is illustrated in Figure 9.9 where 
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Figure 9.8 A cross section through one period of an N = 7 maximum length sequence diffuser.
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periodicity lobes are generated when |r1 + r2 – r3 – r4| = mλ, where m is an integer. By 
considering the geometry of Figure 9.9 further it is possible to show that these grating 
lobes appear in the far field at the following angles:

 (9.9)

where m is the order of the lobes. If Equation 9.9 is substituted into Equation 9.8, the 
following results at the design frequency:

 (9.10)

where it is assumed that each well radiates as a point source. Strictly speaking, a sinc 
function should be introduced to allow for the pistonic radiation, but for now the wells 
will be considered to be relatively narrow compared to wavelength, w ≤ λ/4. Consider 
a 7-well design. A length-7 MLS is {1, 1, 0, 1, 0, 0, 0}, so Rn are {1, 1, –1, 1, –1, –1, 
–1}. In this case, it can be shown that:

 
(9.11)

In other words, the grating lobes radiating into the far field (⏐m⏐> 0 & |m| <N) have 
the same level, whereas the main zeroth order lobe (m = 0) is lower by 10 log10(N + 1). 
Figure 9.10 shows the scattering from the MLS diffuser where the depth is a quarter of 
the wavelength, compared to a hard plane surface of the same size. At this frequency 
there are five lobes, with the central lobe being suppressed by 10 log10(8) as expected 
from Equation 9.11. At an octave higher, however, when the depth is half a wavelength, 
the surface behaves like a plane surface because all waves re-radiate with the same 
phase – this is a critical frequency – the scattering will be rather like that shown in 
Figure 9.7. Consequently, the MLS diffuser is only useful over an octave. This problem 
can be overcome, however, by using different number sequences.
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9.4.2 Quadratic residue sequence

When a quadratic residue sequence is used, the lobe pressure amplitudes are given by:

 
(9.12)

Consequently, all lobes will have the same energy, as has been shown in previous polar 
responses.

9.4.3 Primitive root sequence

A primitive root sequence is generated using the function:

 
(9.13)

where N is an odd prime, r is the primitive root of N and the diffuser will have N – 1 
wells per period. A primitive root is one where sn for n = 1, 2, ... N – 1 are all unique.8 
For example N = 7 has a primitive root of 3, so sn = {3, 2, 6, 4, 5, 1}, which generates 
every integer from 1 to N – 1. Primitive roots can be found by a process of trial and 
error, alternatively, tables can be found in texts, such as Reference 8. Equation 9.13 
can be re-written as a recursive relationship:

 (9.14)

This form is useful because Equation 9.13 can cause overflow problems when being 
computed for large N.

The primitive root diffuser (PRD) is meant to reduce the energy reflected in the 
specular reflection direction and so produce a notch diffuser. In addition, it should have 
even energy in the other diffraction lobes. As with the QRD, the PRD achieves these 
performance criteria at integer multiples of the design frequency. At these frequencies, 
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Figure 9.11 Scattering from two primitive root diffusers and a plane surface for normal 
incidence, showing that a large N number is required to get a significant notch 
in the specular reflection direction (0°). From left to right, N = 7 PRD; plane 
surface; N = 37 PRD.
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the specular direction amplitudes from the PRD are attenuated by 20 log10(N) in 
comparison with a plane surface. It is noted, however, that virtually any welled surface 
will achieve a reduced specular energy provided well depths are significant compared to 
wavelength. Equation 9.10 is a maximum when all radiating waves are in phase, as is 
the case for a flat surface. As soon as a depth sequence is introduced, partial destructive 
interference occurs between the waves, leading to a suppressed specular reflection.

The performance of the PRD in suppressing the specular reflection improves as 
the prime number, N, increases. This is shown in Figures 9.11, where the pressures 
scattered from two PRDs are compared to a plane surface. A large number of wells, 
say greater than 20–30, are needed before a pressure minimum appears at the specular 
reflection angle.

The pressure amplitude of the lobes can mathematically be expressed as:

 (9.15)

Although there is an implication of a series of suppressed lobes for m = ±N, ±2N, ... these 
are not seen in the far field. The frequencies at which the high order suppressed modes 
occur will always be greater than the cut-off frequency for plane wave propagation in 
the wells and so can be ignored.

The specular reflection is attenuated, but it is not a pressure null at integer multiples 
of the design frequency. Feldman9 developed a modified primitive root sequence to 
overcome the problem. The Feldman-modified PRD (FMPRD) contains an extra zero 
depth well so the sequence contains all integers from 0 to N – 1 (instead of from 1 
to N – 1). This spaces the reflection coefficients evenly around the unit circle, on an 
argand diagram, for multiples of the design frequency, leading to an exact null in the 
specular reflection direction. This modification will, however, alter the evenness of the 
non-zero order lobes.
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Figure 9.12 Scattering from a primitive root diffuser (PRD); Feldman modified primitive 
root diffuser (FMPRD); Cox–D’Antonio-modified primitive root diffuser 
(CDMPRD); plane surface; and optimized surface. N = 11. One period, w = 
5 cm, normal incidence source, at the design frequency of 500 Hz (data from 
Cox and D’Antonio10).
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A PRD does achieve nulls, but not at integer multiples of the design frequency. The 
nulls appear at frequencies given by mNf0/(N – 1) where m = 1, 2, 3, …; but it is at the 
integer multiples that the non-zero order lobes have the same energy. This realization 
led to Cox and D’Antonio10 devising a revised formulation for notch diffusers. The 
technique is to introduce an effective frequency shift to align the reflection coefficients 
appropriately around the unit circle at multiples of the design frequency to achieve 
nulls. This is done by rewriting Equation 9.3 as:

 (9.16)

This will be referred to as the Cox and D’Antonio-modified PRD (CDMPRD). Figure 
9.12 illustrates the two modified PRDs compared to a PRD and a plane surface. This 
demonstrates the introduced nulls that the modified schemes achieve. Also shown is a 
notch filter designed through optimization, a subject that will be returned to later in 
this chapter.

It is important to reiterate that these notches are only produced at discrete frequencies. 
Figure 9.13 shows the scattering from a modified PRD, but not at an integer multiple 
of the design frequency. No notch is found. While not achieving optimum scattering 
from a QRD at all frequencies is disappointing, it can be expected that between the 
frequencies of optimum diffusion the dispersion from a QRD will still be reasonable. 
The fact that PRDs only work at discrete frequencies, however, means the PRDs are 
impractical notch diffusers. This problem can be overcome to a certain extent by 
optimization,10 to form a broader notch over a wider frequency range. Alternatively, 
triangles or pyramids may be used to get a more broadband notch, as discussed in 
Chapter 10, but then there are restrictions on the angle of incidence.
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Figure 9.13 Scattering from a modified primitive root diffuser (PRD) and a plane surface. 
Design parameters given in Figure 9.12. At 750 Hz; not an integer multiple of 
the design frequency.
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9.4.4 Index sequences

Schroeder11 formed a complex Legendre sequence based on the index function. This 
has the following reflection coefficients:

 (9.17)

where sn is the number theoretic logarithm or index function defined by:

 
(9.18)

where r is a primitive root of N. For example, the N = 7, r = 3 sequence is {6, 2, 1, 
4, 5, 3} as 36 = 1 mod 7, 32 = 2 mod 7, etc. To find a sequence for a given value of 
N requires a certain amount of trial and error. As the reflection coefficient for the n 
= 0 well is zero, this well should be filled with absorbent. Consequently, the diffuser 
absorbs a nominal 20 log10(N – 1) amount of power. The other wells are like those 
seen in other Schroeder diffusers. Apart from the absorption, the performance of the 
sequences should be very similar to the primitive root diffuser.

9.4.5 Other sequences

According to the Wiener–Khinchine theorem, the Fourier transform of an autocorrelation 
function gives the auto power spectrum. This can be related to diffusers and enable the 
use of other sequences to be understood. The Fourier transform of the surface reflection 
coefficients approximates to the scattered pressure distribution, although strictly 
speaking this is in [sin(θ) + sin(ψ)] space. Applying the Wiener–Khinchine theorem to 
this, if a Fourier transform is applied to the autocorrelation of the surface reflection 
coefficients, the scattered energy distribution should result. Consequently, a good 
diffuser is one which has a delta function autocorrelation function for the reflection 
coefficients, as this will lead to an even scattered energy distribution. (Although 
constant with sin(θ) + sin(ψ), which is not the same as being constant with θ and ψ.)

To demonstrate this, a familiar diffuser sequence can be considered. In Figure 9.14, 
the autocorrelation function for an N = 13 quadratic residue sequence is compared 
to that for a plane surface. It can be seen that the quadratic residue sequence has 
good autocorrelation properties with small side lobe energy, in other words the 
autocorrelation for index ≠ 0 is small. This is one reason that a quadratic residue 
sequence makes a good diffuser.

Another way of viewing this is as follows. Peaks in an autocorrelation function 
away from zero indicate a sequence which has some similarity at some displacement. 
In terms of scattering, there will be angles at which this similarity will lead to lobes due 
to constructive interference. If all similarities can be removed, then in all directions no 
complete constructive interference can take place, and so the scattering in all directions 
will be the same.

Given the above, one approach to finding an appropriate sequence is to look for 
sequences with good autocorrelation properties. This is not difficult as sequences with 
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optimal autocorrelation properties are a keystone of digital communication systems, 
whether that is error checking systems for digital audio, code division multiple access 
(CDMA) systems used in mobile telecommunications or modulating waveforms for 
radar and sonar.

Datiotis et al.12 examined Lüke and power residue sequences which both have good 
autocorrelation properties. In addition, these number sequences offer the opportunity 
to move the lowest frequency at which the wells all radiate in phase to outside the 
audible frequency range. The flat plate effect arises because there is a simple integer 
relationship between the different well depths. A way of mitigating this problem is 
to introduce an integer-based sequence which, although having a small number of 
wells per period, is generated using a larger integer. For instance, short power residue 
sequences can be formed by under-sampling longer primitive root sequences provided 
certain rules are followed. Consider a primitive root sequence based on prime 73; this 
will be of length 72. By taking every ninth sample from this sequence, a shorter-length 
8 sequence is formed. Although this power residue sequence displays slightly worse 
autocorrelation properties than quadratic residue and primitive root sequences, the 
flat plate frequency will be at nine times the frequency that a more normal number 
theoretic diffuser would achieve.

Another approach is to use an optimization algorithm to find sequences with good 
autocorrelation properties.8 The principle of optimization will be discussed in more 
detail later, but the basic principle is to get the computer to search for a sequence with 
minimum side lobe energy. This works well for a small number of wells, but when the 
number of wells becomes large the number of degrees of freedom in the optimization 
becomes too large for this to be an efficient or effective process.

A different sequence not considered before will be used to test the principle of 
choosing sequences with good autocorrelation properties. The Chu sequence is a 
perfect polyphase sequence; in other words the periodic autocorrelation function is a 
perfect delta function. Figure 9.14 shows the autocorrelation function for an N = 13 
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case showing that there is no side lobe energy. The elements of a Chu sequence can be 
generated by:13

 
(9.19)

The phase terms ϕn are converted to depths by equating the deepest depth to the design 
wavelength and maximum phase term, ϕmax, i.e:

 (9.20)

Figure 9.15 compares the normalized diffusion from an N = 13 Chu sequence, with a 
QRD and a plane surface. The performance from the QRD and the Chu sequence is 
overall very similar. Consequently, this presents an alternative design method, but not 
a better one.

9.5 The curse of periodicity and modulation

The scattered polar responses seen in Figure 9.6 are dominated by grating lobes 
generated by the fact that the diffusers are periodic. The lobe energy may be constant, 
but there are large minima between the lobes except at high frequencies when the 
number of lobes becomes very large. The scattered energy is not even in all directions. 
For this reason, significantly better performance can be obtained if the periodicity 
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lobes can be removed by making the diffuser aperiodic or increasing the repeat 
distance. The small number of studies on the subjective effects of periodicity have all 
found that periodicity can cause audible coloration.14 A phase grating diffuser which 
exploits number theory, such as a QRD, is in many ways cursed by periodicity. A QRD 
needs periodicity to form its even energy lobes, yet the periodicity lobes cause uneven 
scattering.

One possibility is to use a number sequence with good aperiodic autocorrelation 
properties. This means that a single period of the number sequence can be generated 
and used without repetition. There are two problems with this solution: first there are 
not many large aperiodic, polyphase sequences known, and second it will usually be 
cheaper to manufacture a small number of base shapes and use each of these many 
times.

Angus15–20 presented a series of papers outlining methods for using two phase grating 
base shapes in a modulation scheme to deal with the problems of periodicity. Figure 
9.16 shows such an arrangement for two QRDs, one based on N = 7, the other on 
N = 5. The idea is to use two or more base shapes and arrange them according to a 
pseudorandom sequence so there is no repetition.

As discussed previously, the far field scattering distribution is roughly given by 
the Fourier transform of the surface reflection coefficients. For a periodic device, the 
distribution of reflection coefficients can be expressed as the reflection coefficients over 
one period, convolved with a series of delta functions:

 (9.21)

where R1(x) is the distribution of reflection coefficients over one period; n is an integer; 
* denotes convolution; W = Nw is the width of one period of the device, and δ the 
delta function.

Equation 9.21 and the following process are illustrated in Figure 9.17. When a 
Fourier transform is applied to Equation 9.21 to obtain the scattering in [sin(θ) + sin(ψ)] 
space, then the convolution becomes multiplication:

 (9.22)

where FT denotes Fourier transform. The Fourier transform of a delta function series, 
is another delta function series and it is the spikes in this for [sin(θ) + sin(ψ)]> 0 that 
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Figure 9.16 A cross section through a modulation scheme using N = 5 and N = 7 quadratic 
residue diffusers and the modulation sequence {1, 0, 0, 1, 0, 1}.
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cause the grating lobes. Consequently, rather than use a delta function series to form 
a periodic device, another function should be used which has better Fourier transform 
properties. Again, what is needed is a sequence with good autocorrelation properties. 
A good choice is a Barker sequence. This is a binary sequence whose aperiodic Fourier 
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Figure 9.17 A modulation scheme illustrated. In the top case (a), a periodic arrangement 
is used and spatial aliasing causes grating lobes even though one period of the 
diffuser has a flat power spectrum. In the bottom case (b), the inverse of the 
diffuser is used in a modulation scheme to reduce periodicity effects.
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Figure 9.18 Scattered polar distribution from a single QRD, a periodic arrangement, and 
a Barker modulation using the QRD and its inverse. 2,000 Hz = 4f0.

 Left figure Right figure
  modulated;  modulated (same as left figure);
  periodic.  one period.
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transform is flattest possible for a binary sequence. Consequently, the response of 
the whole array of diffusers is closer to the single diffuser alone than if a periodic 
arrangement is used. If a perfect binary sequence could be found then the single diffuser 
response would be recovered, but there are no such 1D sequences.

Consider forming a QRD with five periods. The Barker sequence for N = 5 is 
{1, –1, 1, 1, 1}. Consequently, where a 1 appears in the Barker sequence, the normal 
N = 7 QRD should appear. Where a –1 appears, an N = 7 QRD is needed, which 
produces the same scattering, except it is 180° out of phase. This can be done by using 
the rear of the normal N = 7 diffuser (provided the fins are extended far enough). This 
is illustrated in Figure 9.17. Consequently, one QRD has a number sequence of {0, 1, 
4, 2, 2, 4, 1} and the other QRD has a number sequence of {7, 6, 3, 5, 5, 3, 6}. This 
second sequence is found by subtracting the first sequence from N. This is equivalent 
to changing the phase change due to the well depths from ϕ to 2π – ϕ, i.e. obtaining 
an 180° out of phase surface.

Figures 9.18 and 9.19 show the scattering from the periodic arrangement of N = 7 
QRDs compared to an arrangement according to the Barker sequence and a single 
diffuser for two frequencies. One of the frequencies where the diffusion improvement 
is most dramatic is 2 kHz; at other frequencies the improvement is less marked. Figure 
9.20 shows the normalized diffusion coefficient versus frequency. A clear improvement is 
seen in the diffusion, and periodicity lobes are much reduced. As Figure 9.20 shows, the 
diffusion from the periodic array only becomes significant compared to a plane surface 
at 1–1.5 kHz, an octave or so above the design frequency (500 Hz). This is a case of 
the diffuser width, rather than the diffuser depth, limiting the low frequency response. 
At the design frequency, only one lobe appears in the scattered polar distribution, as 
shown in Figure 9.19. The Barker sequence means that there is reduced periodicity in 
the arrangement, and so the low frequency limit of the Barker modulated array is de-
termined by the depth and not the periodicity. This is an important result, as it means 
the low frequency performance of some diffusers can be improved by modulation.
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Figure 9.19 Same diffusers as Figure 9.18 but at 500 Hz, the design frequency.
 Left figure Right figure
  modulated;  modulated (same as left figure);
  periodic.  one period.
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The polar responses show that the scattering from the Barker modulated array is 
more similar to the single diffuser response, which is as expected from the theory 
outlined above. A single diffuser response is not recovered because the Barker 
sequence has good but not perfect autocorrelation properties. Figure 9.21 shows the 
autocorrelation properties for the diffuser arrangements at the design frequency. The 
spikes in the side lobes arise because of the repeat distance of 7 for the N = 7 diffusers. 
The Barker modulation has lower side lobe energy which means the periodicity is 
reduced. Although the Barker sequence has reduced the side lobe spikes they are not 
completely eliminated. This is why the single diffuser response is not completely re-
covered.

There are a variety of number sequences that can be used for modulation. The Barker 
sequence is a good choice as it has good aperiodic autocorrelation properties. As the 
modulation sequence does not repeat, a sequence with good periodic autocorrelation 
coefficient would not be optimal. Barker sequences only analytically exist for certain 
lengths: 2, 3, 4, 5, 7, 11 and 13, but computer-based search algorithms have been used 
to generate number sequences up to length 48.8 For larger diffuser arrays, it may be 
necessary to use other number sequences, such as MLSs, which strictly speaking are 
only good with periodic use.

The modulation works best at multiples of the design frequency. Only at these 
frequencies do the diffuser and its inverse create exactly opposite pressures. At 
other frequencies, the modulation is likely to help with the scattering as it breaks up 
periodicity lobes, but in a more uncontrolled manner.
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Figure 9.22 Comparison of a periodic arrangement of a modified primitive root diffuser 
(CDMPRD); a modulated sequence of the CDMPRD; and a plane surface. The 
periodic surface had 10 periods of N = 11 diffusers. w = 0.05 m, frequency is 
1 kHz, design frequency 500 Hz. The modulated surface was formed from 12 
periods of N = 11 and N = 7 placed in a random order (data from Cox and 
D’Antonio10).
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At high frequencies, say greater than 5 kHz for the typical geometries used in 
practical diffusers, the dispersion by a modulated array summed over a one-third 
octave band is often worse than for a periodic arrangement. This happens because the 
number of grating lobes in the periodic case saturates, so when the polar responses are 
summed over a one-third octave band the grating lobes average out. Having said this, 
the improvements generated by modulation in the more important low-mid frequency 
ranges far outweigh any slight decrease in performance at higher frequencies.

One other feature of note is that the critical frequency at Nf0, where the diffusers 
behave as a flat plate, still remains even with the modulation. The flat plate frequency 
of 3,500 Hz can be seen in the diffusion spectra of Figure 9.20. Both the QRD and 
its inverse used in the modulation suffer the same critical frequency, and consequently 
this problem persists. While it is possible to reduce this problem by choosing a larger 
value for N, it is also possible to use modulation to reduce the effects. To do this, the 
two diffusers to be modulated must have different critical frequencies. There are further 
advantages to using two different diffusers. The QRD works at discrete frequen cies 
based on integer multiples of the design frequency. By using diffusers with two different 
design frequencies, it is possible to achieve more frequencies with better diffusion.17

Cox and D’Antonio10 used a combination of N = 11 and N = 7 PRDs. Figure 9.22 
shows the scattering from this arrangement. Not only does the modulated array still 
achieve a notch at the specular reflection direction, but the two dominant first order 
lobes are broadened. The notch remains because each period of both diffuser types 
produce a null in the specular direction, and summing over all periods still leads to 
nothing scattered in the specular direction.

Angus20 used a combination of N = 5 and N = 7 quadratic residue diffusers in 
an orthogonal modulation. Figure 9.23 shows the autocorrelation of the reflection 
coefficients at the design frequency for a modulation of N = 5 and N = 7 QRD. It 
shows that the original periodicity lobes are reduced, but other smaller peaks are 
produced elsewhere. The locations of the N = 5 and N = 7 diffusers can be determined 
by flipping a coin, or better still by using a pseudorandom sequence with good aperiodic 
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orthogonal modulation using N = 5 and N = 7 QRDs and a Barker sequence.
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autocorrelation properties, such as a Barker sequence. Figure 9.24 shows the normalized 
diffusion spectra. The flat plate frequency at 3.5 kHz is removed by the orthogonal 
modulation, although there is still a decrease in performance around that frequency 
because at that frequency only the N = 5 diffusers are creating any dispersion and so 
a strong specular component still remains. Overall, the performance is not as good as 
the original Barker modulation using the QRD and its inverse described previously. 
Consequently, the best choice for modulation is to use a diffuser and its inverse, but 
choosing a diffuser where the critical frequency is above the high frequency limit where 
cross-modes in the wells appear.

The modulation techniques developed by Angus require two or more base shapes. 
It is possible to achieve cheaper modulation using a single asymmetrical base shape. 
Instead of inverting the diffuser to use the rear, an asymmetrical diffuser can be 
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Figure 9.24 Normalized diffusion spectra for a periodic arrangement of N = 7 QRDs and 
an orthogonal modulation using N = 5 and N = 7 QRDs.
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flipped about its mid-point. For example, an N = 7 PRD is {1, 3, 2, 6, 4, 5} and this 
can be rotated to form a new sequence {5, 4, 6, 2, 3, 1}. This modulation will not be 
successful with quadratic residue sequences or Chu sequences, however, because these 
are symmetrical. Instead, asymmetrical sequences are needed such as primitive root 
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Figure 9.26 A Diffractal®, which imbeds high frequency diffusers within a low frequency 
diffuser to deal with periodicity, absorption and bandwidth problems (top 
figure after D’Antonio and Konnert7).
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or power residue sequences. Figure 9.25 shows the scattering from such a modulation 
using N = 7 primitive root sequences. The modulation reduces the non-zero order 
grating lobes, while still preserving the null in the specular reflection direction.

There is another approach to modulation to reduce periodicity effects and also to 
improve the bass frequency response. The bandwidth of a Schroeder diffuser is limited 
at high frequencies by the well width and at low frequencies by the maximum depth. To 
provide full spectrum sound diffusion in a single integrated diffuser, the self-similarity 
property of fractals can be combined with the uniform scattering property of Schroeder 
diffusers to produce a fractal diffuser. The surface consists of nested self-similar scaled 
diffusers, each of which covers a specific frequency range and offers wide area coverage 
(see Figure 9.26). Each diffuser provides uniform scattering over a specific range of 
frequencies so that the effective bandwidth is extended.

There are numerous natural phenomena exhibiting a macroscopic shape, which is 
repeated microscopically at progressively smaller and smaller scales. At each level of 
magnification we find a scaled replica of the original. These scaled replications are self-
similar, that is they differ only in scale; they are invariant to scaling. The term fractal 
was first coined by Mandelbrot21 to describe these structures, and hence these diffusing 
fractals have been termed Diffractals. It is possible to carry out the scaling many times; 
typical commercial implementations use two magnifications of self-similarity. Another 
analogy to this is a two-way coaxial loudspeaker system. The construction avoids 
using narrow deep wells to cover a wide bandwidth, and so decreases the absorption 
of the device. At low frequency, the small diffusers at the bottom of the wells will 
have negligible depth compared to wavelength, and so only the bass diffuser needs to 
be considered at low frequencies. At high frequencies, the small diffusers will act as a 
modulated array with phase modulation due to the depth of the deep diffuser. The 
phases introduced by the large diffuser on the small diffuser are conveniently also 
quadratic residues, and hence when they sum with the small diffuser phases, the result 
is still a quadratic residue sequence. This is a very useful outcome, because it is possible 
therefore to nest diffusers with overlapping frequency bandwidths. The two layers of 
magnification appear to operate orthogonally. In reality, however, in the overlap region 
at mid-frequencies the situation is likely to become much more complex. The cross-
modes of the large wells will affect the scattering from the smaller diffusers. These 
difficulties make this surface impossible to model with a simple Fraunhofer approach; 
to properly model this surface requires a full BEM solution or similar.

A third-generation Diffractal is illustrated at the top of Figure 9.26 along with the 
overlapping frequency bandwidths of each generation. In the bottom of the figure, a 
photo of a commercial second generation Diffractal is shown. Figure 2.12 showed an 
application of this device at the rear of a studio.

9.6 Improving the bass response

The depth of a diffuser usable in design is often limited by non-acoustic factors. 
Ultimately, the designer or architect will limit the depth available for acoustic treatment. 
Furthermore, with the wavelength of sound extending to 17 m, it is impossible to 
con struct a practical diffuser which will cover the full audible bandwidth and is also 
usable in most rooms. Consequently, there is always a need for extending the bandwidth 
of diffusing devices to a lower frequency.

By using well folding it is possible to gain a greater bandwidth from a given overall 
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depth. Jrvinen et al.,22 Mechel23 and Hargreaves et al.24 and others have investigated 
such a modification which improves the packing density. The standard Schroeder 
diffuser, Figure 9.2, has much wasted space at the rear which can be better utilized. 
Figure 9.27 shows the use of well folding to reduce the depth of an N = 7 quadratic 
residue diffuser. For low frequencies, the depth of the folded well should be calculated 
from the mid-line through the well. So in the case shown, the number sequence 
determining the depth is a quadratic residue sequence of {2, 4, 1, 0, 1, 4, 2}. At high 
frequency, the sound does not pass around the bend of the folded wells, and therefore 
the apparent depth is shallower, and the number sequence effectively becomes {2, 2½, 
1, 0, 1, 2½, 2}. By bending the well such that the distance d shown in Figure 9.27 does 
not relate to the integers of the original quadratic residue sequence, it is possible to 
reduce the effect of critical frequencies where the surface looks like a plane surface.

Under these assumptions a simple Fraunhofer theory can be used. To properly 
model performance, especially at mid-frequencies, a full BEM solution is needed. 
As the depth sequence varies between different frequency ranges, the application of 
number sequences is less straightforward. The problem with folded wells is that they 
are awkward to manufacture. A neat solution is to form the folded well by cutting into 
the sides of a diffuser,25 as shown in the bottom of Figure 9.27. When the diffusers are 
stacked side by side, folded wells are formed.

An alternative regime is to use perforated sheets to add mass to the impedance of the 

d

Figure 9.27 Top: an N = 7 QRD with ‘folded’ wells to reduce the depth to 63 per cent of its original 
size. Bottom: an optimized diffuser where side-cuts are used to form a folded well.
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Figure 9.28 A cross section through a Schroeder diffuser using perforated sheets to add 
mass to the surface impedance of the longest wells and therefore enabling the 
longest wells to be shortened.
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wells, and so lower the resonant frequencies of the wells. This can then lower the 
design frequency. An example of such a device is shown in Figure 9.28, where the use 
of perforated sheets has enabled the longest wells to be shortened. Such an approach 
was tried for diffusion by Hunecke,26 using microperforation, and for absorption by 
Fujiwara et al.27 and Wu et al.28 using larger diameter perforations. For a diffuser it is 
important that the perforation size is not too small, otherwise significant losses may 
result. The principle of the design is that for the first mode, the well reflection coefficient 
of a Helmholtz resonator and of a 1/4 wavelength tube can be made to be similar. 
Consequently, the 1/4 wave resonator tubes of the Schroeder diffuser can be replaced 
by Helmholtz devices. This is illustrated in Figure 9.29 where two well reflection 
coefficients are compared, one for a 1/4 wave resonator and the other for a well of half 
the depth but with a perforated sheet to create the correct resonant frequency. These 
reflection coefficients can be calculated using the transfer function matrix method 
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Figure 9.29 Reflection coefficient phase angle for two wells:
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Figure 9.30 Scattering from an N = 7 QRD at the design frequency, and a similar QRD where 
the longest wells have been shortened and a perforated sheet used to add mass.

  QRD; and
  QRD using perforated wells.
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outlined in Chapter 6. Unfortunately, for higher order modes, the reflection coefficients 
for the Helmholtz resonator and 1/4 wavelength tube diverge. Consequently, this design 
methodology can only work around the design frequency.

Figure 9.30 shows the scattering at the design frequency, illustrating that the two 
diffusers behave similarly. The Schroeder diffuser with perforations is about half the 
depth of the original diffuser, so considerable space savings have been made. A point 
to note when carrying out this calculation is that it is necessary to include the radiation 
impedance of the 1/4 wave tube. This has been ignored for other Schroeder diffusers 
because it is a constant term for nearly all wells and therefore does not affect the 
diffusion. With a mixture of Helmholtz and 1/4 wave devices, however, the correct 
radiation impedance must be included. Figure 9.31 shows the normalized diffusion 
coefficient, showing that for many frequencies similar performance is obtained from 
the perforated device and the normal Schroeder diffuser. At higher frequencies than 
shown, the scattering from the perforated sheet will become rather specular and so care 
in design and application is needed. As the principle is to add mass using perforations, 
mass can also be applied using limp membranes, probably to similar effect, but it may 
be difficult to reproduce mounting conditions consistently in manufacture.

To get a true broadband diffuser using this approach another design approach must 
be tried. Later in Section 9.10 an optimization approach will be discussed. This could 
equally be applied to a diffuser formed from a series of Helmholtz resonators.

9.7 Multi-dimensional devices

The diffusers discussed thus far have been single plane devices. They cause scattering 
into a hemi-disc, acting as a planar surface in the other directions. While this is the 
preferred diffuser design for some applications, there is a need for a diffuser that 
scatters into a hemisphere. For a Schroeder diffuser this can be achieved by forming a 
two-plane device, one that scatters optimally in the x- and z-direction, and therefore 
gives even lobes on a hemisphere. Examples of such surfaces were shown in the bottom 
row of Figure 9.1.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000

normal QRD

QRD with perforated wells
D

iff
us

io
n,

 d
n,

0

f (Hz)

Figure 9.31 Normalized diffusion for a standard QRD and a QRD with perforated sheets 
to reduce the largest well depths.
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As 2D diffusers scatter in multiple planes, therefore, a receiver in the bright zone 
will experience a scattered energy that is reduced more than a 1D diffuser, provided 
multiple grating lobes are present. The number of grating lobes is squared if a 1D of 
width Nw and 2D diffuser of size Nw × Nw are compared. Therefore the energy in 
each lobe will reduce by 10 log10(m), where m is the number of grating lobes present 
for the 1D diffuser.

There are two common processes for forming 2D diffusers. The first involves 
forming two sequences, one for the x-direction, one for the z-direction and amplitude 
modulating the x sequence with the z sequence. For a quadratic residue sequence, this 
can be expressed as:2

 (9.23)

where n and m are integers and index the sequence for the nth and mth wells in the x- and 
z-directions respectively. A similar procedure can be used for primitive root diffusers:

 (9.24)

It is even possible to have a quadratic residue sequence in one direction and a primitive 
root sequence in the other, provided they are based on the same prime number, although 
it is hard to see why you would chose to do this.

A 2D QRD based on N =7 is shown in Figure 9.32. In this case the indexes n and 
m were started from 4 to place the zero depth well in the middle of the diffuser. As 
the surface is periodic, it is possible to start the indexes n and m from any integer. 
Two-dimensional number theoretic diffusers will often have less bass diffusion 
efficiency than a 1D, as the ratio smax/N tends to be close to 1 for 2D devices.

Figure 9.32 also illustrates other sequences that can be used. On the diagonal of the 
diffuser the following sequence appears {4, 1, 2, 0, 2, 1, 4}. This is the original sequence 

( ) Nmns mn  modulo 22
, +=

( ) Nrrs mn
mn  modulo , +=

4 6 3 2 3 6 4 4 6 3 2 3 6 4 

6 1 5 4 5 1 6 6 1 5 4 5 1 6 

3 5 2 1 2 5 3 3 5 2 1 2 5 3 

2 4 1 0 1 4 2 2 4 1 0 1 4 2 

3 5 2 1 2 5 3 3 5 2 1 2 5 3 

6 1 5 4 5 1 6 6 6 1 5 4 5 1 

4 6 3 2 3 6 4 4 4 6 3 2 3 6 
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3 5 2 1 2 5 3 3 5 2 1 2 5 3 

6 1 5 4 5 1 6 6 6 1 5 4 5 1 

4 6 3 2 3 6 4 4 4 6 3 2 3 6 

Figure 9.32 A sequence array for a 7 × 7 quadratic residue diffuser; one period is highlighted.
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{0, 1, 4, 2, 2, 4, 1} but with every fourth element used. This new sequence has the same 
Fourier properties as the original sequence due to the shift properties of quadratic 
residue sequences. This indicates that as well as producing good diffusion in the 
orthogonal directions x and z, good scattering in the directions along the diagonals 
should also be obtained.

The second method for making multi-dimensional diffusers is to use the Chinese 
remainder theorem.29 This folds a 1D sequence into a 2D array while preserving the 
Fourier properties of the 1D sequence. The process is described in detail in Chapter 11, 
where it is applied to hybrid surfaces, but it can equally be applied to polyphase sequences.

The requirement for co-prime factors means that this folding technique cannot be 
applied to single periods of QRDs, because there is a prime number of wells. This can 
be overcome by using an odd-number generator N for the quadratic residue sequence 
which is not prime. For example, a quadratic residue sequence based on N = 15 will 
work perfectly well at the design frequency and can be wrapped into a 3 × 5 array. 
The problem is that the surface will have flat plate frequencies at 3 and 5 times the 
design frequency (as well as 6, 10, 9, 15 … times). Consequently, to use a non-prime 
N it is necessary to make sure the factors of N are sufficiently large that the flat plate 
frequency is above the frequency of interest. For example, N = 143 has factors of 11 
and 13 and so would be a good choice as the flat plate frequencies will be beyond the 
upper limit of most diffusers. It is also possible to apply the Chinese remainder theorem 
to some primitive root sequences, or some other mathematical sequences, such as the 
Chu sequence outlined previously.

It has also been suggested by Pollack and Dodds30 that the wrapping can be carried 
out in a hexagonal configuration:

 (9.25)

Figure 9.33 illustrates a hexagonal QRD based on N = 7 generated using Equation 9.25.
Figure 9.34 illustrates the scattering from a 2D N = 7 × 7 QRD and a plane surface 

as a 3D polar balloon, sometimes nicknamed a polar banana.7 There are a regular set of 
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Figure 9.33 One period of a hexagonal quadratic residue diffuser based on N = 7.
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grating lobes, but these are difficult to see unless the polar response can be animated 
and rotated. Figure 9.35 shows the data as a contour plot, where the grating lobes 
become more obvious. These grating lobes form a regular grid, the middle 9 in a 3 × 3 
grid are most obvious in the case shown. These contour plots are effectively the contour 
on the surface of the hemisphere, looking down onto the hemisphere. Consequently, 
the x- and z- axes shown are non-linear.

Figure 9.36 illustrates the scattering from a diffuser formed using the Chinese 
remainder theorem. A Cox–D’Antonio-modified primitive root sequence based on 
the prime number N = 43 was generated, and so the sequence is 42 elements long. 
It was folded into a 6 × 7 array using the Chinese remainder theorem. Figure 9.36 
shows the response at four times the design frequency, and the specular lobe, which 
would normally be pointing straight up the page, is missing. This demonstrates that 
the folding technique succeeds in preserving the primitive root properties. When 
amplitude modulation is used to form primitive root sequence arrays (Equation 9.24) 
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Figure 9.34 Scattering from an N = 7 QRD at four times the design frequency (top), and 
a plane surface (bottom).
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then planes of reduced scattering are produced. All the scattering in the directions given 
by φ = 0°, 90°, 180° and 270° will be suppressed.

Little measurement or prediction work on multi-dimensional devices has been carried 
out. It appears, however, that the understanding developed from a 1D analysis can be 
extended to multiple dimensions. Issues such as lobes, periodicity and frequency limits 
are all similar.

9.8 Absorption

Section 7.2 discussed in some detail how and why Schroeder diffusers absorb sound 
and how to make a phase grating into an efficient absorber. Briefly, Schroeder diffusers 

Figure 9.35 Contour plot of polar response shown in Figure 9.34 seen from above. The 
QRD (top) shows 13 grating lobes, where the 3 × 3 grid of lobes shown in the 
centre is clearest. The plane surface (bottom) just has a lobe in the specular 
reflection direction.
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primarily absorb because of: (1) high energy flows from wells in resonance to wells out 
of resonance, and (2) 1/4 wave resonant absorption in the wells, especially if the wells 
are rather narrow. Figure 9.37 shows the random incidence absorption coefficient for 
1D and 2D commercial Schroeder diffusers which were similar to the wooden diffusers 
shown in Figure 9.1.

Figure 9.37 shows how important it is not to cover Schroeder diffusers with cloth, as 
this greatly increases the absorption. There is energy flow between wells of the absorber 
promoted by pressure gradients caused by wells being in resonance and having high 
energy adjacent to wells not being in resonance and having low energy. Consequently, 
there is high particle velocity around the front face of a Schroeder diffuser and any 
cloth covering will cause excess absorption, as might be expected if resistive material is 
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Figure 9.36 Scattering from a modified primitive root diffuser based on the prime 43, and 
wrapped into a 6 × 7 array using the Chinese remainder theorem.
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placed in a region of high particle energy flow. Any cloth covering should be placed at 
least a well width away from the front face. The cloth should have the lowest possible 
flow resistivity; indeed it is better if the cloth is not present at all.

There is a wide choice of construction materials for reflection phase gratings. Any 
smooth, reflective, non-diaphragmatic material is suitable. Over the years, diffusers 
have been manufactured from a wide variety of materials, such as wood in various 
species and finishes, light transmitting plastics to provide visibility, thermoformed 
plastics, Glass Reinforced Gypsum (GRG) and expanded polystyrene. Examples of 
these diffusers were shown in Figure 9.1.

Figure 9.37 also shows that 2D Schroeder diffusers absorb more sound than 1D 
devices. It is assumed that this is due to the greater number of different well depths in 
the 2D device, leading to more energy flow between the wells in addition to a greater 
density of 1/4 wave resonances. Furthermore, because there are more well walls present 
than in a 1D device, more losses due to viscous boundary layer effects can occur.

It is important that the Schroeder diffuser is constructed to a high precision. A 
little data has been published for Schroeder diffusers showing very high absorption 
coefficients, but this is generally due to poor construction. Small cracks in the bottom 
of the wells – between the well sides and bottoms – are difficult to avoid unless care 
is taken. If any cracks open up to cavities behind, these can cause excess absorption 
as a Helmholtz absorber/resonator has been formed. Proper sealing with varnish or 
paint is vital. Construction materials are generally not that important unless rough 
surfaces are used. Figure 9.38 shows the absorption of a concrete masonry Schroeder 
diffuser before and after it is sealed with paint. Before being fully sealed the rough and 
porous surfaces cause excess losses at the boundary layers and due to the energy flow 
between wells around the rough edges of the fins. Absorption is greatly reduced by 
sealing properly.

Commins et al.31 experimentally investigated the absorption characteristics of a 
Schroeder diffuser. They showed that by sloping the bottom of the diffuser wells the 
absorption could be reduced. The effect of the slope is to broaden the resonances of 
the wells. This will decrease the energy flow within and between wells at resonance. 
Some early concert hall designs used very wide wells (30 cm), presumably to avoid 
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the problems of absorption. The problem with such wide well widths is that at high 
frequencies specular reflections from the bottom of the wells can cause problems.32 
Furthermore, the bandwidth of the device will be greatly reduced. Consequently, if the 
fear of absorption cannot be overcome, it might be better to use a fractal construction or 
a surface topology which does not generate strong resonances, such as a curved surface.

9.9 But …

All the above analysis has relied on a simplified model of acoustic scattering – the 
Fraunhofer theory. The performance of this theory can be divided into three frequency 
ranges, as discussed in Chapter 8. At low frequencies the theory is inaccurate as the 
mutual interactions across the surface are not correctly modelled by the Kirchhoff 
boundary conditions. At mid-frequencies, the theory is most accurate. At high 
frequencies, the theory becomes inaccurate again because application realistic sources 
and receivers are not in the far field. Berkhout et al.33 pointed out that the theory 
used by Schroeder was approximate and concluded that the development of the 
diffuser should be based on a more complex model. While it is possible to use a more 
complex theory, it is only with the simplified Fraunhofer theory that the problem can 
be reduced to the point that the design can be carried out via simple design equations 
and using basic Fourier concepts. A more complex prediction model can be used in an 
optimization process, as will be discussed later, but numerical optimization is a brute 
force technique which often means the designer learns little about the basic principles 
of good diffuser design.

Schroeder et al.34 replied to Berkhout et al. by pointing out that measurements and 
accurate theory were not too different from the approximate theory. It should also 
be argued that by understanding the Fourier properties one is in a better position to 
understand and exploit brute force techniques such as optimization, or the inverse 
problem alluded to by Berkhout et al. One probable advantage of working with dis-
persing surfaces is that the laws of physics and the tendency to disorder are going to 
aid diffusion. The difference between approximate and accurate theories is probably 
more crucial when exacting results such as notches formed from PRDs are required, 
or when there is a small number of wells. Even if the optimum diffusion as defined by 
Schroeder is not achieved, these are pretty complex surfaces which will create some 
dispersion.

There are other limitations that apply to the Schroeder design, some of which have 
been touched on before:

1.  The design methodology is based on an approximate model.
2.  Losses are ignored.
3.  The design is carried out for the far field, whereas most listeners are in the near 

field.
4.  The wells are assumed to be local reacting.

Assumption 3 may not be that limiting. There is some evidence that a diffuser that 
creates good energy dispersion in the far field also works well in the near field. In the 
near field, the path length differences from different points on the surface dominate 
and cause the scattering to have a large number of minima and maxima. Indeed, the 
polar plots for different diffusers have similar statistical features in the near field. 
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Some studies have compared periodic and aperiodic arrangements of diffusers either 
subjectively or objectively35 using application realistic near field listener positions. 
In these cases, the aperiodic arrangements, which will create more dispersion in the 
far field than the periodic cases, are found to be more efficient diffusers in the near 
field. Consequently, it is assumed that Schroeder diffusers, which create good far field 
dispersion, will also be effective in the near field. A near field polar response normally 
neglects to show phase, and it is assumed that the phase of the wavefront must contain 
the information which enables listeners to distinguish between the periodic and 
aperiodic arrangements.

Schroeder gave an alternative solution to the near and far field problem. He suggested 
that by bending the diffuser the far field scattering pattern could be focussed at near 
field receivers. This means bending the diffuser to follow a parabolic concave mirror. 
This is not a very useful design because it is rather expensive to execute. A similar effect 
can be achieved by modulating the well depth phases by the locus of a parabolic mirror. 
In this case, the varying phases cause the far field beam to be focussed into the near 
field. It is rather like the use of phase changes in beam steering of transducer arrays. 
This process has been tested with a boundary element model and shown to work.5

Assumption 4 concerns whether the well admittances change due to the presence 
of the neighbouring wells. This assumption has undergone some limited tests. Cox 
and Lam5 compared the admittance predicted by a BEM which models the surface 
shape precisely against the simple phase change admittance values derived from a 
reflection coefficient of exp(–2jkdn). Figure 9.39 shows that reasonable agreement is 
found, indicating that the surface admittances are indeed local reacting to a reasonable 
accuracy. Some real parts are seen indicating losses or maybe mathematical inaccuracies 
in the BEM model. If these are true losses, they are due to evanescent waves as the 
BEM model did not include any absorption, and indicates the small inherent absorption 
present in these devices. Cox and Lam also looked at the admittance variation along the 
elongated dimension of a 1D Schroeder diffuser. They again showed that the admittance 
from a BEM model approximately matched the simple phase change admittance, except 
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for positions close to the ends of the wells.
The most significant limitations of the above number theoretic designs are, 

however:

1.  They only work at discrete frequencies.
2.  Optimum diffusion means the same energy in the diffraction lobes; this is not the 

same as even energy in all directions.

As the number theoretic Schroeder diffusers are not truly broadband and do not 
completely disperse to all directions, it is possible to improve on the design. To do this, 
optimization algorithms can be used.

9.10 Optimization

9.10.1 Process

De Jong and van den Berg36 developed the idea of using an iterative solution method 
to produce Schroeder style diffusers. It wasn’t until Cox37 rediscovered this idea in 
the early 1990s, however, and D’Antonio38 provided experimental evidence for the 
improved performance over traditional number theoretic Schroeder diffusers, that 
this concept was exploited. de Jong and van den Berg used an approximate prediction 
model and narrow deep wells which were rather unrealistic for practical diffusers. Cox 
was able to use greater computing power to use more accurate BEMs, and also used 
more realistic geometries.

The concept of optimization is illustrated in Figure 9.40. The idea is to get a 
computer to go through a trial-and-error process searching for the best well depth 
sequence. First, a starting well depth sequence is randomly chosen. Then the computer 
predicts the scattering from the surface and evaluates the quality of the scattering in 
a single figure of merit or error parameter. The computer then adjusts the well depth 
sequence in an effort to improve the error parameter. When a minimum in the error 
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Figure 9.40 Flow diagram for optimizing the well depth sequence of a Schroeder diffuser.
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parameter is achieved the iteration process ends, and a good diffuser has been found. 
Optimization processes are common techniques and have been exploited in a wide 
range of engineering applications.

To achieve an optimization of diffusers, several key ingredients need to be in place:

1.  A validated prediction model.
2.  A figure of merit or error parameter.
3.  An optimization algorithm to change the well depth sequences.

A validated prediction model is needed and for this a BEM can be used. The disadvantage 
with a BEM is that it can be very slow to compute, but as computing power is constantly 
increasing, this is becoming less of a limitation. For computing power reasons, the 
diffusers that Cox originally optimized were rather narrow; now it is possible to carry 
this out with wider diffusers in large arrays over a wider bandwidth. It is also possible 
to use the simpler Fraunhofer models which means the optimization is very fast, but 
then the accuracy may be compromised. One possibility is to use simple models to carry 
out a course optimization, and then use the more accurate models to focus on solutions.

The diffusion coefficient can be used to evaluate the quality of the scattering produced 
by the surface in a single figure of merit. The diffusion coefficient is evaluated at each 
frequency band of interest, say each one-third octave band. The diffusion coefficients 
are then averaged across frequency to obtain a single figure of merit. The risk with this 
simplex averaging process is that the diffusion may be very uneven versus frequency. 
Frequencies with very good diffusion may compensate for frequencies with very poor 
diffusion, where a better solution might be moderate diffusion consistent across the 
whole frequency range. This problem is most easily solved by subtracting a standard 
deviation of the diffusion coefficients from the mean value across frequencies. This 
then penalizes cases with very uneven diffusion coefficient spectra.

An optimization algorithm is used to adjust the well depth sequence during the 
search. It is needed so that the different well depth sequences can be tried and tested 
in a logical manner rather than by a completely random trial-and-error basis. A usual 
analogy for a 2D optimization is finding the lowest point in a hilly landscape (while 
blindfolded). If a human was to carry out such a search, they would start by going 
downhill on the presumption that this will lead them to a lower point. The optimization 
algorithm must make similar decisions. It is vital that the solution is found in the fewest 
steps as otherwise the optimization process becomes rather tedious. The landscape is 
an optimization problem with two degrees of freedom; the analogous diffuser would 
only have two well depths. Practical optimization problems involve many more degrees 
of freedom which makes finding the minima more difficult.

There are a variety of algorithms available for optimization.39 The key decision is 
whether the optimization is to take place with only the figure of merit, or with the 
figure of merit and its derivative. Knowledge of the derivative vastly speeds up the opti-
mization processes and the derivative should always be used if available. To continue 
with the landscape analogy, it is much quicker if the person is told the downhill 
direction, otherwise they have to stagger around for a while trying to decide which way 
is downhill. The problem with diffuser optimization is that the derivative is not often 
known. With the Fraunhofer theory and a simple figure of merit, such as minimizing 
the specular zone energy, it is possible to derive the derivative of the figure of merit,10 
but that is an unusual case.
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For most work on diffuser optimization, only function values are known. A downhill 
simple algorithm has been often used, which is rather slow. It is, however, extremely 
robust to non-linear constraints, something which will become important for the 
non-welled constructions discussed in Chapter 10. There are other techniques like 
genetic algorithms or quasi-Newton gradient descent methods. The disadvantage of a 
genetic algorithm is that it requires tuning by appropriately choosing variables such 
as population size and mutation rate. Methods which calculate gradients with finite 
differences such as quasi-Newton methods can cause problems with solution techniques 
such as BEMs, which often have small numerical inaccuracies which can greatly affect 
the estimated gradient. A downhill simplex method may not be trendy, but it just needs 
plugging in and it works.

When carrying out the optimization for a Schroeder diffuser, it is most efficient to 
use a BEM where the diffuser is modelled as a box with a variable admittance on the 
surface. Then all that changes during the optimization is the front face admittance and 
not the surface profile. This means that the time consuming processes of carrying out 
the Green’s function integrations can be done once at the start of the optimization.

This greatly reduces optimization time. In fact, it should be possible to get the 
derivatives of the figure of merit in this case.40 Time spent speeding up the prediction 
algorithm is time well spent; in a typical optimization process the scattering is typically 
evaluated a thousand times, so unless each individual case takes a matter of seconds, 
the optimization process will become very slow.

In any optimization problem there will be a large number of local minima, but 
somewhere there will be the numerically lowest point called the global minimum. To 
return to the landscape analogy, the blindfolded person might find a valley bottom and 
think the best point has been found, not realizing that over the next mountain ridge 
there is a lower valley. The key to a good optimization algorithm is not to be trapped 
in poor local minima, but to continue to find deep local minima. Provided a good 
optimization algorithm is chosen, this should not be a problem, especially if the optimi-
zation is tried many times from different starting points, as is customary good practice.

When there are a large number of degrees of freedom in an optimization problem, 
i.e. a large number of well depths to be optimized, the surface describing the variation 
of the figure of merit with the well depths becomes very complex. There will be a 
very large number of minima. It is virtually impossible to find the global minimum 
unless a large amount of time is used with the optimization algorithm being started 
over and over again from a wide variety of places on the error surface. Fortunately, 
as the number of degrees of freedom increases, the need to find the global minimum 
becomes less important. Experience has shown that there are a large number of good 
local minima solutions available and, although the scattering will be different in each 
case, there is often negligible difference in performance between the good local minima. 
There is usually no magical global minimum where the quality of scattering produced 
is significantly better than good local minima.

9.10.2 Results

When testing the results of an optimization, it is important to look at frequencies, 
source and receiver positions that are different to those used during the optimization. 
This checks to see whether the design process has found a robust solution. There is 
always a risk that the optimizer will over-fit a poor solution; this is where the solution is 
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good only for the specific geometries and frequencies used during the optimization.
Figure 9.41 shows the scattering from two optimized diffusers compared to an N 

= 7 QRD. One of the optimized diffusers had fins; the other had a stepped profile – 
essentially a Schroeder diffuser with the fins removed. Both the optimized diffusers 
produce more even scattering than the QRD at this and other frequencies.

Cox37 found that the optimized N = 7 diffuser with fins outperforms the QRD over a 
wide variety of frequencies. When the number of wells was increased to about 36 and 
compared to two periods of an N = 17 QRD, however, the gains were less marked. The 
scattering from the QRD was already fairly uniform at the low frequencies and so the 
room for improvement was relatively small. This was not, however, particularly due 
to the use of a quadratic residue sequence – even a diffuser with randomly determined 
well depths gave reasonable diffusion.

Removing the constraints on geometry imposed by a Schroeder style diffuser and 
forming a stepped surface produced better diffusion. The magic in the Schroeder 
diffuser geometry is not that it produces diffusion, but that it enables simple design 
methods to be brought to bear on the problem. Removing the fins enables a simpler 
geometry, which is cheaper to make. It has also removed the resonant wells and so will 
have lower absorption. The improved performance was seen for both the N = 7 and 
N = 36 cases. Interestingly, the N = 7 optimized stepped diffuser looked rather like a 
faceted semicylinder.

D’Antonio38 carried out a thorough experimental evaluation of the work of Cox. 
The measurements confirmed that optimization produced better diffusers than number 
theory sequences. D’Antonio also looked at the performance of the diffusers outside the 
domain of optimization; at higher frequencies, at oblique angles of incidence, for different 
receiver radii and for a periodic arrangement. Outside the domain of optimization, the 
optimized diffusers were found to give roughly the same diffusion as the Schroeder 
diffusers – sometimes worse, sometimes better. The solution to this problem is to 
carry out the optimization including all frequencies, angles of incidence and source 
and receiver radii of interest. With modern computing power this is not a problem.

The original optimization work was limited to narrow single diffusers because of 
computing power. Now this optimization process can be applied to diffusers spread over 
larger areas. Figure 9.42 compares the normalized diffusion from an N = 7 QRD to an 
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optimized modulated arrangement of phase grating diffusers. The improvement in 
diffusion is quite marked.

It is also possible to optimize for a non-even scattering distribution. For example, 
Cox and D’Antonio10 tried to minimize the energy in a particular direction; to produce 
a notch in the specular reflection direction to create an improved PRD. In Figure 9.43 
the results from trying to optimize a diffuser to work from 500 to 3,000 Hz for an 
angular range of ±5° about the specular reflection direction are shown. The diffuser 
is labelled optimized and is compared to a plane surface and a modified PRD. Across 
the optimization range the specular reflection is reduced by about 25 dB compared 
to a plane surface, and by 10 dB when compared to the PRD. This was for a single 
period of the diffuser. When multiple periods were attempted, the results were far less 
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dramatic. Over the bandwidth 500–3,000 Hz the best optimized diffusers could achieve 
was an extra 4 dB attenuation of the specular and near-specular energy when compared 
to the modified primitive root. Although the reduction would probably be audible in 
certain applications, the improvement is not dramatic. Experience has shown that 
using optimization to shape polar responses or create notches is fraught with difficulty. 
Optimization is most successful when trying to create uniform dispersion.

9.11 Summary

Schroeder diffusers have been hugely successful thanks to their simple concept, 
straightforward design equations and their commercial exploitation. There has always 
been a certain reticence among designers to use this type of diffuser, however. The 
rumours of absorption have continued since their inception, with high absorption 
coefficients being published for poorly constructed surfaces. Now that there is a proper 
understanding of the absorption mechanisms, this should no longer be a problem. A 
few people have claimed to hear strange artefacts from Schroeder diffusers, but the 
designs they have been listening to have not followed some of the important design 
principles discussed in this chapter. Following proper design principles and applying 
all the current knowledge results in high quality sound from Schroeder diffusers. One 
of the main stumbling blocks to their use is, however, their visual appearance which is 
either loved or loathed. Consequently, other diffusers are needed which have defined 
acoustical properties but with different visual aesthetics. This will be addressed in the 
next chapter.
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10 Geometric reflectors and 
diffusers

Cylinders, pyramids and plane surfaces are common items in rooms. In this chapter 
the performance and design of these geometric surfaces will be considered as well as 
fractal and optimized curved surfaces. While most diffuser design is about breaking 
up wavefronts by surface roughness or impedance changes, it should be remembered 
that even a plane surface can cause significant diffraction from its edges, provided the 
surface has a similar size to the acoustic wavelength.

Triangles or pyramids can produce dispersion, redirection and specular reflection 
depending on the geometry used. Applied correctly, triangles and pyramids can form 
notch diffusers, where the energy in certain directions is much reduced. Curved surfaces 
are more obviously diffusers and more universally used; indeed a simple sphere or 
cylinder is very effective at spatially spreading reflections, but this is not the only 
ingredient needed for a good diffuser. Furthermore, a solitary sphere or cylinder is not 
very useful and so many spheres or cylinders next to each other are needed. Then the 
scattering is as much about how the objects are arranged, periodically or randomly, as 
about the scattering characteristic of the individual sphere or cylinder. A well-designed 
curved surface has the advantage of blending with modern architectural designs.

This chapter will first consider the role of plane surfaces, as an understanding 
of scattering from finite-sized surfaces is fundamental to diffraction and diffuse 
reflection.

10.1 Plane surfaces

Whether by accident or design, plane surfaces are probably the most common 
architectural surface. Consequently, understanding the reflection effects of finite-sized 
plane surfaces is important. Without surface roughness, any dispersion is generated by 
edge scattering. The effects of edge scattering for more complex surfaces can also be 
partly or fully explained using the concepts given below.

10.1.1 Single panel response

Consider the geometry shown in Figure 10.1, where a source and receiver are near a 
finite-sized plane surface. The surface is assumed rigid, hard and non-absorbing. If the 
source and receiver are chosen so that the geometric reflection point, the point at which 
the angle of incidence equals the angle of reflection, lies on the panel, then the scattered 
pressure as a function of frequency, as shown in the top line in Figure 10.2, resembles 
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an approximate high pass filter. At very low frequencies, when the wavelength is very 
large compared to panel size, little or no sound is scattered from the surface. At very 
high frequencies, when the wavelength is small compared to the surface size, strong 
specular reflection results.

It is useful to define the cut-off frequency for the plane reflector and the transition 
frequency between specular reflection and significant diffraction. To continue with 
the filter analogy, the transition frequency can be taken as the –3 dB point of the 
high pass filter.1–4 This gives an approximate frequency below which the panel most 
effectively scatters sound in all directions and above which the panel produces more 
specular-like reflections. Rindel has derived a simple and useful formulation for the 
cut-off frequency. Rindel4 used a simplified Fresnel solution method for the scattering 
from a plane surface, with the Fresnel integrals approximated by simple mathematical 
functions. Using this solution method, Rindel found a transition frequency above which 
the Fresnel integrals remain roughly constant. He defined this point as the cut-off 
frequency. For a plane panel it is given as:

 (10.1))(cos8 22
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Figure 10.1 Geometry for sound reflecting from a plane surface.
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where r* is given by:

 (10.2)

where r0 is the distance from the source to the panel centre; r is the distance from the 
receiver to the panel centre; 2a is the panel width; c is the speed of sound, and ψ the 
angle of incidence.

The use of a cut-off frequency is most valid for receivers close to the specular 
reflection direction. Figure 10.2 also shows predictions for the scattering at two 
oblique reflection angles. This shows that representing the scattered pressure by a 
simple high pass filter does not work for every direction. In this case, there is often a 
complicated pattern of minima and maxima. When the geometric point of reflection 
lies on the surface of the panel, it is reasonable to assume that the scattered pressure at 
high frequencies is going to be dominated by specular reflection. When the geometric 
reflection point does not lie on the surface, however, the scattered pressure is entirely 
due to diffraction. In this case, the diffracted energy reaching the receiver will decrease 
as the frequency increases. Consequently, the frequency response for these receivers is 
more likely to follow something closer to a band pass filter response. This is illustrated 
by the 43° receiver in Figure 10.2. This is not always true, however, as shown for the 
grazing reflection case. A rough guide to the region over which the cut-off frequency 
representation works is therefore the region over which the geometric reflection 
point lies on the panel. Incidentally, to simplify the calculation of these angles, an 
image source construction is a good idea as it greatly reduces the complexity of the 
trigonometry – this is shown in Figure 10.1.

For a plane panel, the case of scattering close to the specular reflection direction is 
usually of most interest, as this will have the largest amount of the scattered energy 
at high frequencies. Nevertheless, with significant energy scattered into other angles 
at low frequencies, the use of a cut-off frequency should be carried out with caution. 
Equation 10.1 has either assumed a square panel, where the azimuth and elevation 
incident angles are the same or a 2D world. For rectangular panels, and arbitrary 
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incidence angles with square panels, there will be two different cut-off frequencies to 
consider. For circular or odd-shaped panels, the transition will be more complicated, 
but similar general principles to that shown in Figure 10.2 apply.

Figure 10.3 shows the total sound field impulse response – incident plus reflection 
sound – for plane wave scattering. The direct and reflected sounds are clearly distinguish-
able, as is the edge scattering wave which has a negative magnitude. Figure 10.4 shows 
the frequency response for the total sound field shown in Figure 10.3. The reflected 
sound from a plane panel is very similar to the incident sound unless the panel is 
small and so the frequency response shows distinct comb filtering. Comb filtering is 
characterized by minima and maxima at a regular spacing in frequency. The ear is 
particularly sensitive to this emphasis and de-emphasis of frequency components, and 
when audible, listeners will complain of harshness or glare from these reflections.

In diffuser design the ability of a surface to disperse the sound spatially is often 
monitored. Figure 10.5 shows the scattering from a plane thin rigid surface for several 
frequencies in the far field. For the largest wavelengths (lowest frequencies), the 
scattered response is exactly the same as that produced by a dipole, following a |cos(ψ)| 
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function typical of a low frequency dipole approximation. At grazing angles there is 
zero pressure. This only happens for the infinitesimally thin surface, since surfaces with 
finite thickness produce finite pressure. In fact, the pressure for all angles is relatively 
low for large wavelengths as destructive interference is the dominant phenomenon, as 
is true of dipoles. To put this in less technical language, when the wavelength is much 
larger than the panel size, the wave does not ‘see’ the panel and propagates largely 
un disturbed.

As the frequency increases and the wavelength becomes comparable and then smaller 
than the panel size, eventually a specular reflection becomes apparent. Energy is 
concen trated in the specular reflection direction obeying Snell’s law, where the angle 
of incidence equals the angle of reflection. This is a special case of Fermant’s principle, 
where the specular reflection direction is the shortest possible path length and so is 
preferred.

Figure 10.5 presents the far field response. In real spaces, however, listeners and 
sources can be quite close to surfaces. Figure 10.6 shows how the scattered pressure 
distribution varies for a high frequency, as the receiver distance varies. At 0.8 m from 
the panel, the receiver arc diameter is actually smaller than the panel width. For all 
receivers on the 0.8 m arc the scattered pressure is high because for every receiver 
there is a geometric reflection point on the panel giving a strong specular reflection. 
As the receiver arc moves further from the panel fewer receivers get a strong reflection; 
eventually the far field response is achieved.

Figure 10.6 implies that, close to the panel, the flat surface is good at dispersing 
sound. In particular, good coverage is achieved because all receivers get similar energy 
in the reflection. This does not mean, however, that the plane surface is a good diffuser. 
In reality, the plots in Figure 10.6 are only telling part of the story. The polar plots 
of scattered energy do not show how the direct and reflected sounds interfere, or the 
effect this has on the sound heard by the listener. In fact, a comb filter response would 
result, and this is likely to colour the sound, as discussed in Chapter 2.
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10.1.2 Panel array response: far field arc

When multiple plane panels in an array are used the response is a combination of 
both the response of a single panel and the periodic arrangement of the array. Figure 
10.7 shows a sketch of an array which will be used to demonstrate the response. For 
simplicity, scattering in one plane predicted using a 2D model will be used. The findings 
can be generalized to a 3D array, as the principles are the same. Using the simple Fourier 
theory detailed in Chapter 8, it is possible to represent the array response, pa, as a 
multiplication of the single panel response and a set of delta functions:

 (10.3)

 
(10.4)

where β is the transform variable, as discussed in Chapter 9; ψ and θ are the incidence 
and reflection angles respectively; pa is the pressure from the array; p1 is the pressure 
from a single panel; m is an integer; λ the wavelength; 2a the single panel width; W 
the repeat distance; and δ the delta function.

This formulation is for the far field. It is an approximate representation, and so 
the graphs which are being shown are actually generated by an accurate BEM model, 
described in Chapter 8. Equation 10.3 is being used purely to aid understanding of 
the physical processes. This formulation is using similar arguments to those used for 
modulated forms of Schroeder diffusers in Chapter 9, where the concept is given in a 
little more detail.

Figure 10.8 shows the scattering for three contrasting frequencies. The last term in 
Equation 10.3 means that it would be expected that whenever:
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Figure 10.7 Sketch of an array of plane panels tested (source and receiver positions not to 
scale).
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 (10.5)

there should be a reflection similar to the single panel alone. For the middle frequency 
in Figure 10.8, Equation 10.5 predicts lobes at 0, ±53° and this is borne out by the 
prediction of three grating lobes. Consequently, at mid-frequencies, periodicity effects 
will often dominate, and Equation 10.5 will predict their location.

At low frequencies the scattering from a single panel is rather small (20 dB less in 
the specular reflection direction) and follows a dipole response as the wavelength is 
large compared to panel size. In this case the single panel response p1(β) dominates 
the scattered level. The array produces a polar response which is very similar to a 
single panel, albeit with an increased power due to the greater surface area of the 
array of panels compared to a single panel. There are no periodicity lobes because the 
wavelength is so large that only the zeroth order mode (m = 0) can exist in the far field.

At the highest frequency, the scattering is dominated by a strong specular reflection. 
Equation 10.5 predicts a large number of side lobes (70), but these are not seen. The 
reason for this is that the response of the single panel p1 is highly directional as was 
shown in Figure 10.5. Consequently, most of the side lobes have very low levels. In fact, 
the scattering from the array of panels is not too dissimilar to that of a single panel, 
except for a change in radiated power due to the greater surface area of the array.

10.1.3 Panel array response: near field

Simple reflector arrays are often used above stages and audiences in auditoria. In this 
case it is not just the response on a far field arc that should be considered, but also the 
response at application-realistic source and receiver positions. In many cases, this will 
be along a straight line 5–12 m below the reflector array. This produces a scattered 
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Figure 10.8 Scattering from an array of plane panels for three different frequencies:.
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response that is quite different in character to the far field arc. Figure 10.9 shows the 
scattering from the same array as shown in Figure 10.7 with a far field source and a 
line of receivers 8 m below the array running parallel to the array. (A far field source 
is used to simplify matters, but in reality the source would also be in the near field.) 
Figure 10.9 also indicates the panel locations.

At high frequency, the specular reflection from each panel is apparent. The scattered 
pressure is uneven, with a minimum where the geometric reflection point for a receiver 
is between panels, and a maximum where the geometric reflection point lies on a panel. 
For most designs of overhead canopies this uneven response is undesirable. Due to 
these absences between reflectors at high frequency, and the strong specular reflections 
between, shaped elements are usually used, such as arcs, to disperse energy more evenly 
to all receivers. This will be discussed in more detail later in this chapter.

For the middle two frequencies (340 and 3.4 kHz) the response is a complex pattern 
of minima and maxima. These are near field effects (the 10 kHz case was also in the 
near field, but the high directivity of the individual panel response weakened the near 
field effects). The rapidly changing path length differences from the array to the receiver, 
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as the receiver location is moved along the x-axis, cause a multitude of minima and 
maxima. The lowest frequency is in the far field, so something like the dipole response 
seen previously for the far field arc is obtained.

Rindel5 used Fresnel theory to investigate arrays of ceiling reflectors. He used square 
reflectors and investigated the effect of reflector density on the frequency response. He 
found that if the geometric reflection point lay on a panel, a high pass characteristic 
with some similarity to the single panel response was obtained. Due to the fact that the 
reflections come from multiple panels, the actual frequency response had many more 
local minima and maxima than was the case for the single panel alone.

If the geometric reflection point was between panels, however, the scattering had 
a low pass filter response. In the latter case the energy is greatest when the scattering 
is greatest, and this occurs at the low frequencies. At high frequencies the energy is 
concentrated in specular directions and so the scattered energy for these receivers is 
small. Rindel showed that using smaller panels was advantageous, as it reduced the 
roll-off at high frequencies for receivers away from the geometric reflection points.

Either the size of the reflectors or the panel density determines the low frequency 
performance of an array. It is possible to imagine cases where it is a combination 
of these effects which is important. The mid- and high frequency performance is 
dominated by strong local variations due to the size of the reflectors and the repeat 
distance between them. The solution to this is to use non-plane surfaces, as shall be 
discussed later. Alternatively, a pseudorandom arrangement of different panel sizes 
and spacings could possibly be used. However, if the pseudorandom arrangement is 
based on a regular lattice, the reduction of periodicity effects maybe less dramatic than 
expected.

10.2 Triangles and pyramids

Triangles and pyramids can display a wide variety of scattering behaviour from a good 
diffuser to a surface that generates specular reflections, depending on the geometry. It 
will be shown that the scattering from an array of triangles or pyramids is very much 
determined by the steepness of the side slopes. For simplicity, the analysis below only 
considers a 2D case with triangles, but the arguments can easily extend to 3D surfaces, 
such as pyramids.

A simple ray tracing yields much information about how a triangle reflects sound. 

=30°
30°< <45°

=45° >50°

Figure 10.10 Ray tracing of sound reflecting from the centre of pairs of triangles.
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Figure 10.10 shows some simple ray tracing examples. As the angle (χ) of the triangle 
varies, the reflection characteristic shifts between a notch response, diffuse reflection 
and a specular response. To understand a triangular arrangement very simple prediction 
theories based on the Kirchhoff method will not always work, because they do not 
model second and higher order reflections (see Chapter 8). Consequently, it is safer to 
use a BEM model or similar. Initially, only high frequencies will be considered at normal 
incidence. This makes the pattern of scattering clear. A further simplification is that the 
response for only the centre portion of two triangles will be considered, as this is more 
representative of what happens when an array of triangles is used.

For shallow angles (χ ≤ 30°) the ray tracing shows only a single reflection from 
each side as shown in Figure 10.10. This results in two distinct lobes being generated 
at angles of ±2χ. An example of the far field scattering is shown in Figure 10.11. 
This then forms a notch response, with the energy returned to the specular direction 
being minimized. This is effectively a redirecting surface which generates two strong 
reflections in different distinct directions. Unlike primitive root diffusers discussed in 
Chapter 9, this surface forms a notch over a relatively wide frequency range, although 
the performance will be compromised at low to mid-frequencies, when finite-sized 
panel effects become important. Equation 10.1 could be used as a guide as to when each 
side will produce specular-like reflections and so produce a notch response, and when 
the scattering will be more dominated by edge diffraction. This finite panel effect is true 
for all the discussion below, but these comments will not be repeated again. With a χ ≤ 
30° triangle there is only a notch for certain incident angles, whereas a primitive root 
diffuser worked for any angle of incidence, but only at a few distinct frequencies.

For 30° <χ <45° a mixture of single and double reflections are seen in Figure 
10.10. The single reflections will again form lobes in the directions of ±2χ; the double 
reflection directions will be in the directions of ±(180 – 4χ). Figure 10.11 shows four 
distinct lobes in the scattered polar response. By choosing an appropriate triangle slope 
angle, it is possible to have a notch in the specular reflection direction, but now the 
scattered energy is spread over four lobes, which is probably more desirable. However, 
the range of incidence angles over which this notch is achieved will be reduced.
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Figure 10.11 Scattered level from the centre of two triangles for three side angles, from left 
to right: χ = 30, 40, 45°.
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χ = 45° is a special case because the energy is returned back towards the source, as 
shown in Figures 10.10 and 10.11. This is sometimes termed a corner reflector. The 
ability of a corner reflector to return energy back to sources is relatively well known and 
has been exploited in some auditoria as a way of returning energy back onto a stage to 
give reflections which help musicians and actors hear themselves and others.

For 45° <χ <54° double reflections always occur, but these only generate two lobes. 
An example is shown in Figure 10.12, for χ = 50°. As χ increases beyond 54° the 
number of reflections a ray undertakes before escaping the surface rises. A varying 
number of clear distinct lobes are still generated and simple ray tracing techniques can 
still be used to locate the directions of the most significant lobes. The relative level of 
the lobes varies, however, depending on the reflection paths. When the angle becomes 
very large (χ> 85°) then a single fairly broad lobe appears. The surface is in many ways 
acting like a horn loudspeaker in that a highly directional response is obtained. This 
occurs because the escape angles for the rays is limited to ±(90 – χ). This then returns 
the energy back to the source, but in a more diffuse manner than occurs with a χ = 
45° surface. The simplistic analysis used here needs to be read with a little caution. 
Once these devices become very narrow and a great number of reflections occur then a 
resonant structure has been formed. Consequently, there is a risk of resonant absorption 
as is seen for Schroeder diffusers.

10.2.1 Arrays of triangles

The single triangle response is not that useful because usually large areas are needed 
to be covered and then the surface will become too deep, unless this is incorporated 
into the overall room shape in some way. Consequently, arrays of triangles need to 
be considered. Figure 10.13 shows the scattering from an array of χ = 15° triangles 
compared to a single triangle of the same size. Also shown is the response of two 
plane panels. An impressively large notch of almost 30 dB is generated for the array 
case compared to the plane surface. Additional lobes are also seen arising because 
of periodicity. The location of these can be predicted from Equation 10.5, however 
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Figure 10.12 Scattered level from the centre of two triangles for three side angles, from 
left to right: χ = 50, 80, 85°.
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not all the lobes appear. The m = 0 and m = 3 lobes are attenuated because the single 
triangle response is weak in those directions. These periodicity lobes can be reduced 
by using modulation similar to that used for Schroeder diffusers discussed in Chapter 
9. For example, two different triangle sizes could be chosen and arranged according 
to a pseudorandom number sequence.

Figure 10.13 actually represents a frequency where the notch diffuser is working well. 
Figure 10.14 plots the drop in the specular direction level as a function of frequency for 
the single triangle and the array. This shows that at other frequencies the attenuation is 
not as good; for example at 1.5 kHz the attenuation is only 13 dB. While this is a drop 
in level which is likely to be audible, it would be better if the performance could be 
improved. For example, the reflection free zone concept for small room design6 would 

Figure 10.14 Decrease in specular zone pressure level when a triangle diffuser replaces a plane 
surface for different number of triangles. (Note: y-axis plotted in reverse order.)
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typically be trying to achieve a 20 dB drop in the first order specular reflection level.
A brief parametric study looking at different triangle sizes shows that the peaks and 

dips in Figure 10.14 relate to the triangle depth. The maximum attenuation occurs 
when the depth is a multiple of λ/2. Unfortunately, if χ is increased further, say to 30°, 
this neat story relating the depth of the triangle to the wavelength of the minima and 
maxima is no longer true. Nevertheless, these results again lead to the thought that 
orthogonal modulation could solve the problem, following the ideas developed by 
Angus for Schroeder diffusers outlined in Chapter 9. By using two or more different 
depth triangles so that their frequency bands of higher specular reflection energy are 
different, it should be possible to improve the notch generated. By using two different 
depth triangles it might be expected that the improvement would be of the order 
of 3 dB, so a large number of different triangles would need to be used. Another 
solution to the problem is just to make the triangles much deeper, although overly 
deep surfaces are often not possible for non-acoustic reasons such as cost, weight and 
visual appearance.

10.3 Concave arcs

Concave surfaces such as domes are often an acoustician’s nightmare. Used wrongly 
they lead to focussing effects that generate strong reflected energy in certain places. 
This can lead to uneven energy distribution across the room as well as echoes and 
coloration of timbre.

Whether an arc causes problems depends on the positions of the sources and 
receivers, and the radius of the arc. Figure 10.15 shows the scattering from a concave 
arc at a mid-high frequency for different receiver radii. Figure 10.16 schematically 
shows a ray tracing of the surface scattering. Figures 10.15 and 10.16 show that the 
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Figure 10.15 Scattered level from a concave arc for various receiver radii, r. rf is the focal 
length of the concave surface.
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focussing effect of the curved surface is only a problem for some receiver distances, 
close to the focal length of the arc. Consequently, it is possible to use a curved surface 
provided the focus of the surface is away from the listeners. For example, a concave 
ceiling in an auditorium is not a problem provided the curved surface focusses the 
sound well above or below the audience. If the focus is well above the audience, then 
the concave surface can paradoxically cause dispersion, but not as well as many other 
surface shapes. On the other hand, if the focus is below the audience, although the 
focussing may not be heard, the concentration of non-lateral sound from above may 
not be desirable for other acoustic reasons.

If a concave arc with a focus on listeners is inevitable, there are two possible solutions: 
either treat the surface with an absorber or a diffuser. Absorbers can be placed in front 
of the surface to remove the reflection, although this must be considered alongside 
the reverberation time requirements of the room. There might also be a desire to pro-
duce some reflected energy from the concave surface, perhaps to provide ensemble 
reflections to musicians or early reflections to the audience to improve spaciousness or 
clarity. Diffusers can be used to break up the reflected wavefront and so disperse the 
focus while still maintaining the acoustic energy and avoiding absorption. Figure 2.34 
showed a scattered polar distribution for a concave arc before and after treatment 
with an optimized curved diffuser. Figure 2.35 showed the curved surface used. The 
reduction in focussing is dramatic.

10.4 Convex arcs

A single cylinder is an efficient disperser of sound in one plane and a single sphere is 
efficient at dispersing hemispherically. They generate responses that mimic the behaviour 
of radiating line and point sources, respectively. Figure 10.17 shows the scattering from 
a semicylinder for three frequencies. The radial axis range of this graph is only 20 dB 
so at all frequencies the response from the semicylinder is fairly omnidirectional. The 
400 Hz response is where the wavelength is roughly the width of the semicylinder 
and so some edge diffraction effects are seen. The lowest frequency, 40 Hz, is not 
omnidirectional because the rear of the semicylinder becomes important – it would be 

Figure 10.16 Ray tracing for scattering from a concave arc. The region marked with a 
dashed line will receive higher reflection levels than elsewhere.
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more omnidirectional if a cylinder had been modelled. At the two highest frequencies 
the scattered level only varies by 2–3 dB over the receiver arc.

It might appear that the cylinder is the ideal diffuser – the Holy Grail of diffuser 
designs – but this unfortunately is not the case. A single cylinder on its own is rarely 
of much use. The example given in Figure 10.17 was 0.5 m deep – already deeper than 
many architects allow – and it was only 1 m wide, which is not wide enough for most 
applications. One solution is to use multiple cylinders in an array. Then the response 
of the cylinder array is dominated by how the cylinders are arranged, and the perfect 
response from a single cylinder becomes a secondary and less important issue. Another 
solution is to flatten the cylinder, but then the perfect angular dispersion will be lost 
for oblique sources.

There are also issues with cylinders and the total sound field response. Figure 10.18 
shows the impulse response for a direct sound and a reflection from a large semicylinder. 
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Figure 10.17 Scattered pressure from a 1 m diameter semicylinder for various frequencies 
(the 1/√f variation with frequency due to Green’s function has been removed 
by normalization):

  40 Hz (λ = 8.5d, d = cylinder diameter);
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Figure 10.18 Incident and reflected time response for a semicylinder the same width as the 
plane surface used in Figure 10.3.
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The semicylinder has the same width as the plane panel used for Figure 10.3 to allow 
direct comparison between the surface types. The reflected sound is attenuated because 
of spatial dispersion, but the time signature is still very similar to the reflection from 
the plane surface. Consequently, large cylinders and semicylinders produce comb 
filtering similar to that generated by plane surfaces, as shown in Figure 10.19, however 
the minima and maxima variation is over a slightly smaller magnitude range for the 
semicylinder. The comb filtering is thought to give rise to the harsh sound that some 
large semicylinders generate, although a more detailed set of subjective tests would be 
interesting and could clarify the situation. Certainly, semicylinders are an enigma; they 
appear to be a near perfect diffuser from dispersion graphs, but they do not sound like 
a perfect diffuser.

10.4.1 Geometric scattering theory and cut-off frequencies

One method that has been proposed to predict the scattering from a curved surface 
is geometric theory.3,7 The scattering is split into two processes. First the diffraction 
from the finite-sized panel is considered and then the effect of curvature added. The 
finite-sized surface effect is predicted using Fraunhofer or Fresnel theory. The effects 
of curvature are accounted for by a simple beam tracing method. If a curved surface 
is illuminated by a beam with parallel sides, the reflected beam will diverge due to the 
curvature of the surface as shown in Figure 10.20. If the wavelength is assumed to be 
small compared to surface size, then simple geometric constructions can be used to 
calculate the attenuation due to curvature. For plane waves, this is given by:3

 (10.6)

where the composite radius r* is defined in Equation 10.2, Rc is the radius of curvature 
of the panel and ψ is the angle of incidence and reflection. It is also possible to produce 
a formulation for spherical waves.7 Figure 10.21 shows the scattered pressure versus 
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Figure 10.19 Total field frequency response for large semicylinder scattering.
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frequency for the specular reflection direction for the two theories and the 3D BEM 
model. It is assumed that the BEM gives accurate results and so this indicates that the 
geometric model works to a certain degree – the magnitude is approximately right 
but the ripples are not predicted. Figure 10.22 shows a scattered polar response. 
The geometric theory of scattering is not successful for receivers where the geometric 
reflection point is not on the surface. For these receivers the effect of adding curvature 
should be to increase the scattered pressure, as energy is moved away from specular 
reflection angles to these receivers. The geometric formulation incorrectly applies an 
attenuation, whatever the angle of reflection.

The cut-off frequency for plane panels was a simple concept that readily allows 
some rough and ready design principles to be applied. Investigations have shown8,9 that 
Equation 10.1 also works for curved surfaces, provided the receivers are close to the 
specular reflection direction, which was a necessary stipulation for plane surfaces also.

Figure 10.20 Effect of curvature on a sound beam.
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Figure 10.21 Prediction of scattered levels for a curved surface using three theories (after Cox9).
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10.4.2 Performance of simple curved reflectors

For normal incidence, reflectors based on part of an arc of a circle have good dispersion 
performance. Figure 10.23 compares the predicted scattering from a semicylinder and 
a flattened semicylinder (an ellipse) for normal and oblique incidence. For normal 
incidence the semicylinder disperses the sound well, as it generates a virtual line 
source. For oblique incidence, however, the performance is poorer for the flattened 
semicylinder. The flattened semicylinder also has worse performance for normal 
incidence. Incidentally, the trends are similar if a section of a circle is used instead 
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Figure 10.22 Prediction of scattered levels from a curved surface using three theories (data 
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of a flattened circle – only a complete semicylinder at normal incidence produces 
the very good dispersion. Consequently, if a whole semicylinder cannot be used in 
an application, a better solution than flattening the semicylinder or taking part of a 
circle is needed. There are two possibilities: either use an array of semicylinders or use 
optimization to construct a more complicated curved shape. Arrays are considered 
below, and complicated curved shapes later in this chapter.

10.4.2.1 Arrays of semicylinders

Once cylinders are arranged in an array, the performance is dominated by a combination 
of the single cylinder response and the periodicity. If the simple analysis surrounding 
Equation 10.3 is considered, then the key to gaining good diffusion from a set of 
cylinders is mostly about how they are arranged. The scattered pressure distribution 
from one cylinder, p1(β) is constant if second order reflections are not considered. 
Consequently, the sum of the delta functions in Equation 10.3 dominates the scattered 
pressure distribution. Once again a modulation technique, where the cylinders are not 
arranged periodically, is needed to change the functional form of the last term in the 
Equation 10.3 to give more even scattering.

The simplest method to follow is the modulation techniques described for Schroeder 
diffusers outlined in Chapter 9. For cylinders this means using two or more semicylinders, 
and arranging them randomly or pseudorandomly on the wall. This will reduce perio-
dicity and so improve dispersion. Figure 10.24 shows this by comparing a periodic and 
a random array of semicylinders. At mid-frequencies, where there are some grating 
lobes, but not too many, the aperiodic arrangement helps to create extra lobes, thereby 
improving dispersion. In this case it is surprising how dominated the scattering is by 
lobing. A simple diffraction grating with one point source in the middle of each diffuser 
can produce reasonably accurate predictions of the scattering. At mid-frequencies, 
simple geometric base shapes very much mimic point sources.

The overall envelope shows some reduction for reflection angles far from the specular 
reflection direction. This tailing off is presumed to occur due to second and higher 

   20    40(dB)
-90

-60

-30

0

30

60

90

Figure 10.24 Scattered pressure distribution for a periodic and aperiodic arrangement of 
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order reflections from the array – neighbouring semicylinders get in the way of reflected 
sound. Similar results are seen for oblique incidence.

At high frequency, however, the modulation of the cylinders does not affect dispersion 
significantly for normal incidence. An example is shown in Figure 10.25. At high 
frequencies the grating lobes are so close together spatially that the local variation in 
minima and maxima is similar for periodic, modulated and random arrangements. 
Again, as in the mid-frequency range, there is a gradual tailing off at the edges of the 
overall envelopes of the polar responses. In the example shown in Figure 10.25 there 
is roughly a 15 dB drop from normal to grazing receivers. At oblique incidence (result 
not shown), the modulated arrangement is better at controlling the overall envelope, 
and a clear improvement on a periodic arrangement is achieved.
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Figure 10.25 Scattered pressure distribution for a periodic and aperiodic (modulated) 
arrangement of semicylinders. For the periodic set, 15λ ≈ d, where d is the 
diameter (chord) of the semicylinder:

  periodic; and
  aperiodic.
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As previously discussed, dispersion is only one aspect of diffuser performance, although 
possibly the most important one. The total field response, incidence plus reflection, 
should also be considered. Figure 10.26 shows the total field for a periodic set of four 
cylinders. Only two arrivals are shown because the array was set up sym metrically 
and so there are only two unique arrival times. Figure 10.27 shows the frequency 
response for the total sound field. This can be compared to previous graphs in this 
chapter for plane and single semicylinder scattering. Using an array of cylinders has 
not destroyed the comb filtering, but it has somewhat reduced it. It might be expected 
that comb filtering aberrations such as coloration may well still be present, but may 
not be so noticeable. Figures 10.28 and 10.29 show the total field time and frequency 
responses for a complicated arrangement of many different-sized semicylinders. The 
use of a random arrangement of cylinder sizes and shapes has further broken up the 
regularity of the frequency response, making it much less likely that coloration will 
be heard.

In conclusion, several key features will determine the performance of semicylinder 
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Figure 10.27 Frequency response for four periodic cylinders.
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arrays. The low frequency limit of the diffuser will either be determined by the repeat 
distance or the diffuser depth. Multiple grating lobes need to be present for dispersion 
and hence repeat distance is important (see also Chapter 9). The issue of depth has not 
been discussed before for semicylinders, and unfortunately is as likely as not to be set 
by non-acoustic requirements. If the depth is the determining feature, then empirical 
results have shown that curvature produces significantly more scattering than a 
plane panel when the depth is greater than ≈λ/10. The mid-frequency performance is 
dominated by the arrangement of the semicylinders. The key to good performance is 
to avoid periodicity, or to ensure that the repeat distance is as large as possible. The 
high frequency performance, when the number of grating lobes is very large, seems 
difficult if not impossible to control.

10.5 Optimized curved surfaces

10.5.1 Example application

When designing a diffuser, the requirements of visual aesthetics and acoustics must be 
considered, and these are often in conflict. Schroeder diffusers may have well-defined 
acoustic performance, but they do that with a very specific visual appearance which it 
seems is either loved or loathed. Unless diffusers are visually acceptable to the architect 
they are unlikely to be used. Curved surfaces are common in modern architecture. 
Spurred on by the availability of new materials and computer aided design, architects 
are increasingly designing prestigious buildings where large flat surfaces appear to be 
outlawed in principle.

Curved diffusers are therefore appealing because they can complement modern 
architectural trends. They can have a form which blends with other structures in a 
building and they do not have to look like an obvious add-on. The Hummingbird 
Centre in Toronto is an interesting example10 (shown in Figure 2.2). Diffusers were 
required on the side walls of the auditorium because a sound enhancement system was 
being installed which would generate echoes across the room, unless some surface 
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treatment was applied. The original design specification was for Schroeder diffusers, 
which were to be cloth wrapped to hide their visual appearance. After much discussion, 
a curved surface designed by optimization was accepted instead and because this fitted 
the visual appearance of the room there was no need to hide the diffusers. The curved 
diffusers blended with the room design while having good acoustic performance. 
Other examples of optimized curved surface were shown in Figures 2.24–2.27, 2.35 
and 2.36.

10.5.2 Design process

Section 9.10 described how it is possible to get a computer to search for the best 
possible depth sequence for a Schroeder diffuser. It is also possible to get a computer 
to search for the best curved shape to generate dispersion.11 For those unfamiliar with 
optimization, it may be necessary to read Section 9.10 before the description below 
because the background details of how optimization works are not repeated.

As with any diffuser optimization process, it is necessary to have a set of numbers 
that describe the surface shape. These shape parameters can then be changed by the 
optimizer to allow the computer to search through possible surface shapes. In the case 
of Schroeder diffusers this was straightforward; the shape parameters were the well 
depths. For a curved surface a different regime is needed. Any surface shape can be 
represented by a Fourier series and so the surface displacement, y, can be represented by:

 (10.7)

where an and bn are the shape parameters which are altered to change the surface shape. 
kx is usually set so that the harmonic for n = 1 corresponds to half a wavelength across 
the panel in the x-direction. N is the number of harmonics used. This gives a single 
plane diffuser which has modulation in the y-direction only. It is also possible to use 
2D Fourier transforms to form the shape in multiple dimensions – the only cost is 
computation time as the number of shape parameters to be optimized increases.

From Fourier theory, if an infinite series is used any diffuser shape can be produced. 
In reality it is necessary to truncate the series at some point as every extra element in the 
series gives a new dimension to the optimization process. Too many dimensions and the 
minimization becomes too slow. Furthermore, one advantage of curved diffusers over 
more complex surfaces is their simpler construction leading to potentially lower costs 
and lower absorption. An increase in the number of harmonics in the series increases 
the complexity of the diffuser shape which may cause excess absorption and increased 
cost. For these reasons, 4–6 harmonics are typically used. Once a surface shape is 
formed, it is necessary then to scale the shape to fit the maximum displacement in the 
y-direction required (i.e. fixing the maximum diffuser depth).

There are other mathematical representations of curved surfaces which can be used. 
For example, it is possible to define a number of variable points on the surface shape 
and use a cubic spline algorithm in one plane or a bicubic spline algorithm12 in two 
planes to form a smooth curved surface between the variable points. It is possible 
to construct a harmonic series not based on sinusoidal basis functions. Frequency 
and amplitude modulation processes can also be used to generate many different 
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shapes. Although there are many possibilities, the essential principle of needing shape 
parameters remains.

Problems sometimes arise when the best surface found by the computer does not 
meet the visual requirements of the architect. A curve is wanted, but the solutions 
produced are not quite what the designer originally envisaged. In addition, it is often 
necessary to ensure that the surface avoids other objects in the room, or has appropriate 
breaks to allow for lighting. In this case, non-acoustic constraints must be used in the 
optimization process to force the shape to meet visual and physical constraints. This 
can be done via a set of fuzzy coordinates through which the surface must pass. Figure 
10.30 illustrates how such a system can be used to force a surface to pass through 
particular points. The error parameter in the optimization becomes a combination of 
the diffusion coefficient that measures the scattering quality and a penalty value that 
measures how close the surface is to the constraint points (this can be an additive or 
multiplicative penalty). This is often used to ensure that edges of diffusers meet walls 
as illustrated in Figure 10.30c. In addition, this technique can be used to ensure that:

• cusps are not formed between adjacent periods of periodic diffusers;
• the left and right edges of diffusers are at the same displacement so that periodic 

diffusers edges will meet without a discontinuity; and
• obstructions, such as pillars, are avoided.

While using such a constraint system is straightforward for physical problems, such 
as avoiding cusps, it is more problematic when trying to force the shape of the curve 

Fuzzy constraint point
(a) Surface passes
through fuzzy constraint
point, no penalty applied.

(b) Surface misses fuzzy
constraint point, penalty
applied proportional to d.

d

(c) Use of fuzzy constraints
to ensure diffuser meets a
wall at edges.

(d) Use of fuzzy
constraints to ensure an
S-shape.

Figure 10.30 Use of fuzzy constraints to ensure optimized curved diffuser meets visual and 
physical constraints (after Cox and D’Antonio13).
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into the visual aesthetic demanded by the designer. Often during room design the 
interior designer has a definite idea about the general shape required for the diffuser, 
e.g. ‘We would like an S-shaped diffuser’. Trying to come up with a suitable set of 
constraint points for this is possible, but involves some trial and error. Furthermore, 
the constraint point system lacks elegance and will slow down the optimization 
process by increasing the complexity of the error function surface to be searched. 
One solution is to use a spline construction, as then linear constraints on the shape 
parameters can be used.

A superior system is one where the surface is designed from shape variables in such 
a way that the only surfaces generated are ones that satisfy the visual constraints. 
One way to do this is distortion.13 The architect supplies a base shape and distortion 
is used to change the acoustical performance of the shape while retaining the visual 
integrity. Such a process is familiar in image processing as a technique for adding effects 
to photographs. This is illustrated in Figure 10.31. In the distorted pictures, it is still 
possible to recognize the picture as being a person; the rough visual appearance is 
maintained, yet radically different pictures are obtained. The idea behind diffuser 
distortion is to alter the surface shape using image processing and other techniques 
in such a way that the general visual appearance is maintained, and yet a different 
acoustic performance is obtained. To achieve this, compression, modulation and 
warping techniques are used.

10.5.3 Performance for unbaffled single optimized diffusers

Initial work on curved diffusers examined whether they could perform better than arcs 
of a circle.11 It was found that for all depths and widths tested the optimized diffusers 
were as good or better than arcs of circles. An interesting trend in the solutions from 
the optimization process was that when the maximum allowable depth and width 
of the surface were similar, so allowing a rough semicircular surface to be formed, 
this was the surface shape found by the optimization process. This near semicircle 
was similar to the arc of a circle and so for these geometries the optimization process 
could only produce diffusers which matched the performance of the circle arc. When 
the geometric constraints meant that a semicircle was not a possible solution then the 

Figure 10.31 Distortion in image processing (after Cox and D’Antonio13).
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optimized surface found different, more complex shapes that were better at generating 
spatial dispersion than the standard curved surface.

The failure to improve on the simple arc does not show a fundamental weakness 
in the optimization process – it in fact illustrates how well it works! What has been 
shown is that, for the geometries tested, approximately semicircular diffusers have near 
optimal spatial dispersion and there is little room for improvement. (Remembering that 
spatial dispersion is not the only consideration for diffusers, time dispersion should 
also be considered.) This is illustrated in Figure 10.32 where the scattered pressures 
from two arcs and one optimized surface are shown. For the wide arc (right graph), 
the scattered pressure shows a noticeable fall off at large angles of incidence. The 
optimized diffuser provides more uniform scattering and does not suffer from such a 
fall off in pressure. For the narrower surface (left graph), the arc is nearly semicircular; 
the diffusion is fairly uniform, and it would be difficult for any surface to improve 
on the scattering produced in terms of spatial redistribution. The optimized diffuser 
shape is also a rough semicircle, indicating that this is almost certainly the best shape 
possible within the geometric constraints. Note that a single semicylinder is unlikely to 
give the necessary temporal dispersion and will not cover a large enough area.

Typical examples of a standard deviation diffusion parameter as a function of 
incident angle for an arc and optimized surfaces are shown in Figure 10.33. The figure 
is using an old diffusion evaluation technique and the lower the value of diffusion 
the greater the spatial dispersion. In this case the optimized diffuser has sacrificed a 
little performance for normal incidence sound, to improve the scattering for oblique 
sources. This shows the ability of the new surface to produce more uniform scattering 
for random incident sound.
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Figure 10.32 Scattered level from three surfaces at 2.8 kHz, 30° incident source.
 Left figure: standard curved diffuser (same as optimized diffuser) 1× 0.4 m.
 Right figure:  standard curved diffuser, dimensions 4 × 0.4 m;
  optimized diffuser 4 × 0.4 m (data from Cox11).
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10.5.4 Periodicity and modulation

When placed in a periodic arrangement the quality of scattering at low to mid-
frequencies is dominated as much by grating lobes generated by surface repetition as by 
the detailed surface shape. One solution to grating lobes (spatial aliasing) is to remove 
the periodicity completely by using a very large surface. Unfortunately, this is likely to 
be an expensive solution and consequently, a modulation scheme similar to that devised 
for Schroeder diffusers discussed in Chapter 9 can be used.

Figure 10.33 Diffusion from four surfaces; incidence sound angles different for each graph. 
Top: normal; middle: 30°; and bottom: 60° incidence sound. This uses an old 
standard deviation measure, where complete diffusion is when the standard 
deviation is zero.

  plane surface;
  arc of a circle;
  optimized fractal;
  optimized curved surface (after Cox and D’Antonio19).
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Consider a single asymmetrical diffuser base shape shown at the top of Figure 10.34 
in bold. If this base shape were arranged in a periodic fashion, grating lobes will arise. 
If, however, some of the periods are rotated, then the periodicity can be reduced. In the 
case shown in Figure 10.34 the repeat distance has been doubled by this modulation.14 
The figure also shows a 3D rendering of the idea. In general this will improve the 
diffusion. A key to this type of modulation is to form a shape which is sufficiently 
asymmetrical, so that flipping the shape produces completely different scattering. 
A further complication is ensuring that neighbouring diffusers tile together without 
discontinuity in surface displacement or gradient. By forming surfaces with zero end 
gradients and with the same surface displacement on both ends, it is possible to form 
a surface that will tile in any orientation. Then the architect can decide what pattern to 
form. More importantly, pseudorandom arrays enable diffusers of considerable extent 
to be created from small base shapes. If there is a discontinuity in gradient between 
panels then a cusp results. An inward facing cusp can be useful in generating additional 
scattering, but the appearance may not be desirable.

In its extreme, this modulation can result in a surface where the individual base 
shape is not clearly distinguishable.15 The top of Figure 10.35 shows a single period 
of a 3D curved surface in various orientations and the bottom shows the same shape 
in a modulated array. The single period device has the same symmetrical shape on 
each edge, and the gradient around the perimeter is zero. This allows the surface to be 
tiled in any orientation. If the surface depth is z and is a function of the coordinates 
across the width x and length y of the diffuser, z = F(x,y), then the requirements can 
be mathematically expressed as:

Figure 10.34 Top: a curved diffuser (not optimized for acoustics). The base shape is shown 
in bold. By changing the orientation between periods it is possible to increase 
the repeat length of the diffuser. Bottom: the same principle rendered in 3D 
showing one base shape and a modulated array.
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(10.8)

where L is the width (or length) of the diffuser.
When placed in a modulated array, the base shape disappears in a complex pattern of 

minima and maxima. This allows the use of one base shape and reduces manufacturing 
costs. Figure 10.36 shows an example application of modulated curved diffusers on 
the ceiling of a radio studio.

A periodic look is often favoured, however. It seems that a periodic object enables the 
eye to more easily decode the design. A completely random surface can be too difficult 
to interpret and hence not pleasing to the eye. This is, of course, a crass generalization 
– there are successful architectural designs where randomness is embraced – but it is 
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Figure 10.35 Top: an asymmetric single base shape used in modulation shown in different 
possible orientations. Bottom: a 4 × 4 modulated array of the base shape.
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more common for a periodic entity to be specified. Using this asymmetrical base 
shape gives designers control over the appearance. It can be made to look random or 
periodic, but the designers have to remember that short repeat distances will result in 
worse dispersion. Figure 10.37 shows the scattering from three surfaces showing how 
modulation can improve the scattering performance over a periodic array.

Figure 10.36 Modulated curved diffusers used in the ceiling of a radio production studio 
at KTSU, Texas Southern University, Houston, TX (Acoustician: HFP 
Acoustical Consultants). Insert shows close-up of ceiling.

Figure 10.37 Three polar responses for scattering at 2 kHz. Left: plane surface; middle: 
optimized modulated array; right: periodic arcs.
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10.5.5 Stage canopies

Overhead stage canopies are often designed with arrays of curved panels. The primary 
role of a stage canopy is usually to provide reflections back to the musicians or actors 
to allow them to hear themselves and others. Canopies may also be used to distribute 
some energy to the audience. There might be little delay between the direct sound 
and the overhead canopy reflection in the audience area, however, and care should be 
taken to avoid coloration due to comb filtering. If a completely flat large surface is 
used above the stage, plenty of energy will return to the musicians. Unfortunately, the 
energy will be too strong and likely to cause coloration. Consequently, a canopy often 
needs to be shaped to create temporal diffusion to reduce coloration. This is often done 
with curved surfaces. Figures 2.25–2.27 showed examples of curved canopies designed 
using optimization.

Canopies appear to fall into two rough categories which are determined by the 
amount of open area in the canopy. Sometimes canopies completely cover the stage 
(virtually no open area). This is most common where the canopy is being used to block 
sound entering a fly tower as was shown in Figure 2.32. Other canopies use elements 
sparsely, with plenty of open area between the canopy diffusers or reflectors, as is the 
case for the reflectors shown in Figure 2.27.

An optimization study16 was carried out to investigate whether this design method 
could be used for stage shells with a reasonable amount of open area. Figure 2.25 
showed a canopy designed using this principle. The canopy is such that there is a little 
open space between each of the reflectors to allow some energy to pass up to the void 
above. The canopy is about 7 m above the stage so that the reflections are delayed by 
an amount known to give a good chance of reflections aiding ensemble and support.17 
For the optimization study, five diffusers were arranged on the arc of a large circle from 
the front to the back of the stage. The diffusers were assumed to extend across the full 
width of the stage. The design criterion in the study was that for any source position 
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Figure 10.38 Scattering from a stage canopy with plane reflectors (after Cox and D’Antonio16).
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on the stage, as even as possible energy distribution would be created to all positions 
on the stage. In other words, each musician has an equally good chance of hearing each 
other as far as the stage canopy reflections are concerned. This is a criterion that can 
be used in an optimization process described previously.

The optimized design was compared to several other reflector shapes, such as a plane 
surface and arcs of circles. The optimized surface outperformed the other diffuser 
shapes in producing the most even energy distribution across the stage area. Figure 
10.38 shows the scattering coverage plot from the plane reflector canopy at 2 kHz 
for a source in the middle of the stage. The variation in pressures across the width is 
small because this was modelled as a large flat surface; any variation is due to spherical 
spreading and path length differences. There is a large reflection level directly below 
the source as much of the energy is being reflected straight back to the musician who is 
playing the instrument. Dips in the reflected pressures occur where there is no geometric 
reflection point on one of the reflectors due to the spaces in the canopy design. As 
discussed previously, shaping the reflectors can reduce the effects of pressure minima; 
this is often done by forming convex arcs.5

The effect of using a more complex optimized curved surface is shown in Figure 
10.39. The effect of the surface diffusers is to reflect energy to receivers where specular 
reflections are missing. It also greatly reduces the strong specular energy being directed 
straight back to the musician. The reflected energy is more evenly distributed across the 
stage – all pressure levels along the front to back axis lie within 3 dB of each other.

The criterion of even energy across the stage needs to be used with caution, and is 
now considered not to be the best for all cases. Consider a canopy with a small open 
area, in other words a large surface with the same width and depth as the stage. A flat 
surface will give very good coverage on the stage, as noted before, but this does not 
make it a good stage canopy. Overhead reflections in this case will be strong, and the 
desire here is to reduce the coloration produced by these reflections. Consequently, 
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what is needed is a surface that produces temporal diffusion to minimize comb filtering. 
It is therefore usually better to design a stage canopy to promote maximum dispersion 
across a complete arc from –90 to +90°, in other words asking for maximum dispersion 
not just on the stage. If simple arcs are avoided, this maximizes the temporal dispersion 
from the overhead canopy and so minimizes coloration effects.

It is also possible to get the optimizer to look at the best locations, angles, number 
and sizes of canopy elements alongside examining the detailed surface shape of each 
element. While this can be carried out on a case-by-case basis, a study was also under-
taken to explore what the underlying principles in canopy design might be and so 
develop some rules of thumb.18 The optimizer was run many times with different target 
values for the reflection level on stage – this was done using the support measure17 – 
resulting in many different canopy designs with different open areas.

Figure 10.40 shows how the width and depth of the best canopy designs varied 
with canopy open area. Figure 10.41 shows the variation in the number of canopy 
elements with open area. Fuller canopies with smaller open areas are shown towards 
the left of the figures. These canopies provide more reflections back onto the stage and 
have higher support. To the right of the figures the canopies provide lower level of 
reflections because the open area of the canopies is quite large. For the fuller canopies 

w = -0.0071A + 1.349

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

Open area, A (%)

W
id

th
w

(m
)

d = -0.0012A + 0.2821

0 20 40 60 80 100

Open area, A (%)

0.

0.15

0.2

0.25

0.3

0.35

D
ep

th
,d

(m
)

Figure 10.40 Changes in optimized reflector width and depth as a function of per cent 
open area, A. The best fit lines show the underlying relationship between 
optimum reflector size and canopy open area.



364 Geometric reflectors and diffusers

with small open area the best designs tend to have more canopy elements which are 
wider and deeper in comparison to more open canopies. Furthermore, fuller canopies 
have simpler, less wiggly shapes than canopies with larger open areas. Because fuller 
canopies have only a small open area there is less need for dispersion from the canopies 
to provide reflections to receivers who lack specular reflections.

It seems that relatively small panels are preferred. This supports the findings of 
Rindel5 who studied the effect of density and panel size on array performance for 
flat elements. He concluded that panels needed to be relatively small so that energy is 
diffracted to receivers who do not receive a specular reflection from the canopy array. 
For this reason, high frequency performance was determined by panel size. The low 
frequency performance of the array was determined by the canopy density. The opti-
mization study has also produced a new finding: that the desirable reflector width and 
depth is dependent on the open area of the canopy.

When a canopy is completely full and there are virtually no gaps between the panels, 
then the design issue is how to reduce coloration caused by the inevitable strong 
specular reflections. In this case, covering the surface with diffusing surfaces may be 
a good option. The situation is very similar to rear and side stage enclosure design, 
which was discussed in Section 2.8.

10.6 Fractals

Fractal mathematics is used to create natural objects in computer generated graphics, for 
example to make landscapes for animated films. Fractals are surfaces with a different 
visual aesthetic compared to common sound diffusers and so offer the possibility of 
expanding the pallet of surfaces available to designers.19

There is reason to believe that fractal surfaces may have good acoustic properties. 
Fractals are self-similar or self-affine; as a surface is magnified a similar looking surface 
is found. Consequently, the rough surfaces at different magnifications can be used to 
scatter different frequency ranges in an analogous way to the use of drivers of various 
sizes to radiate distinct frequency ranges from coaxial multi-way loudspeakers. This is 

no. of reflectors = -0.0822A + 9.809

0

2

4

6

8

10

0 20 40 60 80 100

Open area, A(%)

N
um

be
r

of
re

fle
ct

or
s

Figure 10.41 Variation in number of stage canopy reflectors with per cent open area, A. 
A least squares best fit straight line is also shown.



Geometric reflectors and diffusers 365

the principle of the Diffractal,20 as discussed in Chapter 9 and shown in Figure 9.26, 
which imbeds small-scaled copies of an N = 7 QRD at the bottom of a larger N = 7 
QRD. The small QRDs scatter mid-high frequencies and the large QRDs the bass 
frequencies. The construction is precisely self-similar; the exact shape is found upon 
magnification. This will not be true for surfaces considered here, where the surfaces 
are simply statistically self-similar or self-affine.

There are many established techniques for generating finite sample approximations 
to mathematically pure fractal shapes.21,22 Single plane diffusers are described and 
are made from extruded 1D fractals. Construction methods for higher dimensioned 
surfaces are also available, but are ignored here for conciseness.

10.6.1 Fourier synthesis

Fractal surfaces can be constructed from spectral shaping of a Gaussian white noise 
source. Figure 10.42 is a schematic showing how the surfaces can be generated; 
such a scheme is more familiar in digital signal processing as a time signal filtering 
process. The Gaussian white noise is passed through a filter which is implemented 
using simple Fourier techniques. The shaping of the spectrum is done using a roll off 
with a defined number of dB per octave. The decrease in spectral content per octave is 
characterized by the gain of the filter at each spatial frequency. The filter gain A(X) is 
given by:

 (10.9)

where X is the spatial frequency and β is the spectral density exponent which takes 
values between 1 and 3. This then ensures that the dimension lies between 1 and 2, as 
required for a 1D fractal shape. Figure 10.43 illustrates some typical surface shapes that 
are generated by such a scheme. The bottom line is the input Gaussian white noise. The 

/2

1)(
X

XA =

IFFT

Shape

spectrum

|Y|

y

y

X 
x

X

FFT

x 

Input white noise

Fractal diffuser shape

|Y|

Figure 10.42 Schematic diagram showing Fourier synthesis construction technique (after 
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middle line was generated with a roll off of 3 dB/octave (β = 1) which gives 1/f noise, 
which in acoustics is termed pink noise. It is also a commonly occurring spectrum in 
other natural phenomena, for example in the pitch variations found in music. The 
top line is formed by a steeper roll off of 6 dB/octave (β = 2) and is characteristic of 
Brownian motion, random walk or brown noise.

The shapes given in Figure 10.43 can be made into diffusers by extrusion, and will 
be termed fractional Brownian diffusers (FBD), as the functions represent fractional 
Brownian motion. By varying the spectral density exponent the spikiness of the surface 
shape can be altered. In the most general terms, to get the best low frequency scattering 
performance the spectral density exponent should be large, leading to a smooth shape. 
To get the best high frequency performance, however, a low spectral density exponent 
is needed as this makes a spiky shape. The story is, however, more complicated. It has 
been found that although the spectral density exponent does determine the scattering 
quality at low and high frequencies to a certain degree, the correct choice of the white 
noise sequence is most important. Unfortunately, it is not possible to optimize these 
surfaces, as there are too many governing shape parameters.

10.6.2 Step function addition

Brownian motion can also be simulated by adding a set of randomly displaced step 
functions. Although this is not always as mathematically pure as a Fourier synthesis 
technique, it facilitates a reduction in the number of parameters required to represent 
the surface shape.

To get proper Brownian motion requires the addition of an infinite number of step 
functions. Each step function has a random amplitude and random step position along 
the width of the diffuser. The displacement of the diffuser from a flat surface y at a 
distance x along the diffuser is given by:

 (10.10)
<

==
= 0,1

0,0
)()()(

1
fwherexxfAxy i

i
i

Width, x

D
ep

th
, y

Figure 10.43 Different fractal surfaces generated by Fourier synthesis. Bottom line: input white 
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where Ai are a set of Gaussian distributed random amplitudes and xi a uniformly 
distributed random set of positions on the diffuser with –a ≤ xi ≤ a, where 2a is the 
diffuser width. Figure 10.44 illustrates the random addition of step functions for a 
few terms.

To utilize this generation method efficiently the infinite sum in Equation 10.10 needs 
to be truncated. In acoustics, the difference in wavelength from the highest to the lowest 
frequency of interest is not so great that a sound diffuser requires self-similarity over a 
large range of magnifications. Instead of an infinite sum of terms, a finite number, N, 
has been used, with each successive term having a decaying amplitude.

 (10.11)

The decaying amplitude function produces a similar probability distribution of values 
as the original Gaussian random values Ai, except at the most extreme values of Ai. 
The other difference is that the amplitudes can now only be regularly spaced values, 
rather than being truly random. This reduces the number of independent parameters 
to N + 1, the set of displacements xi and the amplitude decay rate α, and enables opti-
mization to be used.

Using only a few step functions can lead to flat areas which might be prone to 
producing specular reflections at high frequencies, or sharp spikes which are un-
desirable. This can be seen in the 20 step function surface shown in Figure 10.44. 
Consequently, rather than step functions, f(x) can be replaced with functions with more 
graceful transitions. For example, a hyperbolic tangent function can be used for this:

 (10.12)

The effect of using a hyperbolic tangent function is to round the top and the bottom 
of the step functions. The γi value changes the rate of transition from the top to the 
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Figure 10.44 Fractal generation by step function addition. Bottom line: 1 step function; middle 
line: 10 step functions; top line: 20 step functions (after Cox and D’Antonio19).
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bottom of the step and the amount of rounding. γi may either be a constant for all terms 
in Equation 10.11 or alternatively may be allowed to decay or increase:

 (10.13)

The ‘fractal’ shape is now determined by N + 2 parameters. These are known as random 
addition diffusers (RADs).

When optimizing and testing these surfaces it was surprising to find that this 
generation technique can make semicylinders when the depth was roughly half the 
width. As discussed previously in connection with curved surface optimization, the 
semicylinder is very good at dispersing sound provided it is not in an array. This 
demonstrates that the optimization is working, but does raise the question as to whether 
the optimized shape can really be called a fractal!

When a more application realistic wide diffuser is optimized, the arc of a circle is no 
longer optimal, and better fractal diffusers are found. Figure 10.33 compared different 
diffusers using a standard deviation diffusion parameter (small is best). The fractal is 
better than the arc of a circle for random incidence sound. It seems that optimized 
fractal surfaces do produce reasonable diffusers; however, optimized curved surfaces 
often have better dispersion. Consequently, fractal construction techniques may 
produce different visual aesthetics to optimized curved surfaces, but not necessarily 
better diffusers.

10.7 Volumetric diffusers

Modern diffuser design has centred on the use of surface diffusers which are most often 
attached to the walls or ceiling of a room. But there is a different approach to achieving 
scattering in a room. The idea is to place the diffuser in the volume of the room rather 
than on surfaces. By placing scattering objects in the volume of the room the scattering 
elements have the possibility of influencing 4π space, whereas surface diffusers can 
only work on 2π space, and so volume diffusers have the potential to be more efficient. 
Surface diffusers often have limited bass response because of depth restrictions but it 
may be possible to overcome these by using volumetric designs. The problem with 
applying these structures is that they cannot be placed where they reduce sight lines or 
get in the way of the room’s functionality. However, in some rooms it would be poss-
ible to find places for volumetric diffusers. Volumetric scatterers are commonly used 
in reverberation chambers, and there have been a few isolated examples of diffusing 
objects hung from the ceiling of auditoria. Overhead stage canopies could also be 
viewed as volumetric diffusers. But no one has tested the effectiveness or developed a 
design methodology, except in the case of reverberation chambers or stage canopies.

There is a recent body of literature23 which has examined sonic crystals for the 
purpose of preventing sound transmission. Sonic crystals are regular arrangements 
of objects, say cylinders or spheres, which when placed in the path of sound waves 
result in frequencies which are not readily transmitted, known as band-gaps. Previous 
studies have concentrated on the propagation through periodic sonic crystals and how 
to maximize the band-gap effects, rather than studying the spatial distribution of the 
scattered sound field.

= 0;1
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Many of the key issues met with surface diffusers also arise with volumetric scatterers. 
Effects of periodicity, such as grating lobes which indicate uneven spatial distribution, 
or band-gaps which indicate an uneven frequency response, are undesirable. This means 
a random or pseudorandom arrangement of scattering elements in a multi-layered or 
3D array will be needed, perhaps as seen in Figure 10.45. The elements that make up 
the volumetric diffuser, the cylinders and spheres, need to have a variety of sizes to 
scatter the different wavelengths of sound, so a fractal construction is most likely to be 
successful. The density of the elements within the array is important. With insufficient 
density too much sound will pass through the array unaltered; considering lines of 
sight through the structure can help understand the performance. It is unlikely that a 
single density throughout the whole structure will give the best performance. If outer 
layers are too dense, then too much sound will reflect from these and not reach the 
inner layers. A structure that gets progressively more dense towards the centre is likely 
to work best – a bit like impedance matching with absorbers.

10.8 Materials

Geometric reflectors and diffusers can be made from a variety of materials. Examples 
include wood in various species and finishes, light transmitting or thermoformed 
plastics, fibre reinforced gypsum, concrete, high density polystyrene and metal. The 
choice of material depends on factors such as visual appearance, weight and acoustic 
absorption. Nowadays, environmental effects are an additional consideration in 
choosing a suitable material. When using wood and plastics, fire resistance is an im-
portant factor, as are indoor air quality standards for low emitting products, such 
as formaldehyde, volatile organic compounds and other carcinogenic materials. In 
addition, recycled content, locally supplied materials and other characteristics are also 
important in sustainable or green design. The discussions in Section 5.2.3 about sus-
tainable absorbers are pertinent here.

Geometric reflectors have potential to resonate and cause absorption. The resonant 

Figure 10.45 A volumetric diffuser.
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frequency of a simply supported rectangular isotropic panel of width a and length b 
is given by:24

 (10.14)

where m is the surface density (kgm–2) and B the bending stiffness given by:

 (10.15)

where E is Young’s modulus, h the panel thickness and ν is Poisson’s ratio. The 
fundamental resonance, i = n = 1, is of primary concern here, because this is usually 
the most easily excited and so has the greatest potential for absorption.

For large panels the coincidence phenomenon may also be important at higher 
frequencies. When the wavelength of the (bending) waves propagating in the reflector 
is the same as the wavelength of sound in air, then the panel is easily vibrated by the 
airborne sound, and absorption will result. This happens at the coincidence frequency, 
which is given by:

 (10.16)

where c is the speed of sound in air. If surfaces are orthotropic, for instance if a 
corrugated surface is used, then the coincidence effect will extend over a significantly 
wider bandwidth.

Some favour having stage enclosures with low frequency absorption, in which case 
the resonant frequencies in the above formulations need to be placed at appropriate 
bass frequencies and the panel should not be overly damped. Proponents of these 
‘diaphragmatic’ enclosures, which are typically not sealed, argue that the surfaces 
surrounding an orchestra can be used to provide low frequency absorption to create 
more clarity on the stage. Furthermore, in a small hall, a sealed shell may overpower 
a small audience and typically these shells contain openings and/or diaphragmatic 
surfaces to dissipate energy. There are also occasions in small halls where the low 
frequency absorption from surfaces surrounding the audience can be used to control 
bass reverberance.

In a large hall, however, it is usual to preserve as much sound energy as possible. So 
surfaces around the stage and the audience should have low absorption. One way of 
achieving this is to make the surface heavy, placing the first resonance of Equation 10.14 
at such a low frequency that resonant absorption is no longer important. However, the 
coincidence frequency of Equation 10.16 needs to be checked for large surfaces unless 
the bending waves are highly damped.

Heavy elements are often, however, undesirable, because they increase costs as the 
weight must be supported by the building somehow. This is especially true for suspended 
reflectors. An approach often used is to lighten the load by using a honeycomb core 
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with two lightweight faces. This laminated structure is very stiff and has low mass. 
However, Equation 10.14 shows that a high stiffness and low mass results in resonance 
at an elevated frequency. Furthermore, Equation 10.16 shows that this also lowers the 
frequency of coincidence. Consequently, increasing stiffness on its own risks increased 
absorption from both resonance and coincidence.

A better solution for lightweight surfaces is to heavily damp the resonance, which will 
prevent sound from significantly vibrating the material, and consequently minimizes 
absorption. Adding damping to increase reflectivity might seem counter intuitive. But 
by damping the resonances, the impedance mismatch between the air and the surface 
increases, leading to less absorption. Damping might be achieved by firmly bonding two 
materials together to form a constrained-layer damping system. For instance, rubber, 
cork-rubber or a viscoelastic material might be sandwiched between two layers of 
fibre reinforced gypsum or wood. Alternatively, some materials are inherently highly 
damped and using damping significantly reduces absorption due to panel resonances 
and the coincidence phenomenon.

10.9 Summary

This chapter has covered a wide range of different diffuser types. Starting with plane 
surfaces, it looked at the effects of edge diffraction. The performance of arcs, triangles, 
pyramids, fractals and curved surfaces was then considered. Current state–of-the-art 
is to use numerical optimization to allow the surface shape to meet both the acoustic 
and visual requirements. With good design there are many shapes that can make good 
diffusers, but only a few of these will ever be visually acceptable in a particular project. 
The next chapter looks at the use of absorption to promote diffuse reflections.
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11 Hybrid surfaces

A diffuser needs to break up the reflected wavefront. While this can be achieved by 
shaping a surface, it can also be done by changing the impedance of the surface. Indeed, 
Schroeder diffusers are often interpreted as being a surface with a spatially-varying 
impedance. In this chapter, variable impedance is achieved by patches of absorption 
and reflection. Unlike the Schroeder diffuser, these cannot be designed for minimum 
absorption. These surfaces are hybrids somewhere between pure absorbers and non-
absorbing diffusers. Partial absorption is inherent in the design while any reflected 
sound is dispersed.

Using patches of absorption to generate dispersion is not particularly new. In studio 
spaces people have been arranging absorption in distributed patches rather than solid 
blocks for many years. In more recent times, however, a new breed of surface has been 
produced, where the absorbent patches are much smaller, and the arrangement of 
these patches is determined by a pseudorandom sequence to maximize the dispersion 
generated. This chapter will start by discussing some implementations of these surfaces 
to give a sense of how they can be constructed. Then a more detailed theoretical 
basis for their design will follow.

11.1 Planar hybrid surface

The Binary Amplitude Diffsorber, also known as a BAD™ panel,1 is a flat hybrid surface 
having both absorbing and diffusing abilities. The panel simultaneously provides sound 
diffusion at high and mid-band frequencies, and crosses over to absorption below some 
cut-off frequency. Figure 11.1 shows a typical construction and an application in a 
music practice room. A porous absorber, such as mineral wool, is faced with a complex 
perforated mask and the panel might be fabric wrapped for appearance. The white 
patches on the mask are holes, and the black patches hard reflecting surfaces.

Figure 11.2 shows the random incidence absorption coefficient for a hybrid surface 
compared to the mineral wool alone; the effect of changing the backing depth is also 
shown. The additional vibrating mass within the holes of the mask causes the ab-
sorption curve to shift down in frequency generating additional low to mid-frequency 
absorption. At high frequency, the hard parts of the mask reflect sound and hide some 
parts of the mineral wool; this causes a reduction in the absorption coefficient. It is 
at these high frequencies, where the absorption is reduced, that the surface needs to 
disperse the reflected sound.

To accomplish mid- to high frequency dispersion a 31 × 33 2D array of absorptive 
and reflective areas is used. The reflective areas map to the 1 bit and the absorptive 



Figure 11.1 Top: construction of a hybrid surface: porous absorber (left), the mask 
(middle), and fabric covering (right). Bottom: an application on the lower 
part of the wall in the rehearsal room for the Commodores, the US Navy jazz 
ensemble. (Acoustician: Polysonics Corporation)

0

0.2

0.4

0.6

0.8

1

1.2

100 160 250 400 630 1000 1600 2500 4000
f (Hz)

A
bs

or
pt

io
n 

co
ef

fic
ie

nt

Figure 11.2 Random incidence absorption coefficient for a hybrid surface (BADTM panel) 
compared to mineral wool. Four different backing depths for the panel are shown:

  2.5 cm BAD;
  5.1 cm BAD;
  7.6 cm BAD;
  10.2 cm BAD; and
  2.5 cm Fibreglass.
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areas map to the 0 bit in a binary pseudorandom number sequence. The distribution 
of these binary elements is based on an optimal binary sequence with a flat power 
spectrum as this maximizes dispersion. For example, maximum length sequences 
(MLSs) can be used.

Hybrid surfaces extend the acoustical performance of traditional fabric wrapped 
absorbers and allow wide area coverage without excessive deadening at mid- to high 
frequencies. The treatment is used in facilities that need reflection control. The con-
struction is simple and inexpensive. Furthermore, the acoustic function can be hidden, 
which can lessen the conflict between visual aesthetics and acoustic requirements. 
Alternatively, many architects are interested in seeing the mask due to its unique ap-
pearance and the fact that it offers an alternative to the traditional periodic perforated 
metal patterns. Figure 11.3 shows a home theatre installation in which a black anodized 
aluminium mask was used. The mask can be made from a variety of materials provided 
they are rigid and non-absorbing, such as wood and metal, and a non-woven matte 
can be used on the back surface to conceal the porous absorber.

11.2 Curved hybrid surfaces

Flat hybrid surfaces such as the BAD panel still generate a coherent specular reflection, 
albeit attenuated because it is partially absorbed. The hard parts of the mask still 
generate reflected waves that arrive in phase in the specular direction. One solution 
to this is to shape the surface, as then the specular reflection can be significantly 
reduced to achieve even more uniform diffuse reflections. Figure 11.4 illustrates such a 
construction with a simple curve as well as an application of the device. The absorption 
performance of curved hybrid surfaces will be similar to the planar surfaces, but as 
shall be shown later in this chapter, the dispersion will be greatly increased. This curved 

Figure 11.3 Example application of planar hybrid surface (BAD panel) in a home theatre 
(left). The BAD panels are on the back left wall, and are also shown magnified 
on the right. (Acoustician: Pilchner Schoustal International Inc.)
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construction has found favour in recording studios as it allows treatment away from the 
extremes of complete absorption, specular reflection or diffuse reflection. This enables 
the sweet spot, the place where the room acoustics are at their best, to be spatially 
expanded. Figure 11.5 shows an application of a curved hybrid surface2 on the ceiling 
and walls of a post production studio.

As porous absorbents have a lower speed of sound than air, hybrid surfaces also 
have the ability to perturb the sound field more at lower frequencies when compared 
to hard diffusers of the same depth. In theory, hybrid surfaces can produce diffuse 

Figure 11.4 A curved hybrid surface and its application in a control room at the Universal 
Music Mastering Studios in New York City (room design: Francis Manzella 
– FM Design Ltd, photo: George Roos).

Figure 11.5 A curved hybrid diffuser applied to the ceiling and side walls of SonyM1, New York. 
(Photo by Paul Ellis of The M Network Ltd, Acoustician: Harris, Grant Associates.)
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reflections at lower frequencies, although at low frequency the effect of these surfaces 
can be dominated by absorption. Nevertheless, it appears that hybrid surfaces can 
make efficient use of a limited depth. As absorption is inevitable in these devices, they 
are not useful in spaces where absorption must be minimized, such as large auditoria 
for symphonic music.

Chapter 10 explained how optimization can be used to design rigid curved surfaces. 
This process can also be used to make hybrid curved surfaces. A binary sequence with 
good autocorrelation properties is chosen and then the computer is tasked to find the 
best shape.

11.3 Ternary and quadriphase surfaces

As noted above, a problem with planar hybrid surfaces is that energy can only 
be removed from the specular reflection by absorption. For instance, the specular 
reflection is only attenuated by about 6 dB for a surface with a 50 per cent absorptive 
area. To improve performance it is necessary to exploit interference and reflect waves 
out-of-phase with the specular reflection. This can be achieved by adding wells to the 
surface.3 An example of this is shown in Figure 11.6A. The reflection coefficients of 
this surface are then made up of three values, which at the design frequency are –1, 0 
and +1. As a result, optimal ternary sequences are required. By adding wells to hybrid 
surfaces a very useful improvement in performance is achieved for a modest depth 
penalty.4 Performance is even better if two different well depths are used, in which case 
a quadriphase (4–level) sequence is used.

11.4 Simplest theory

First, a discussion of the design of hybrid surfaces using the simplest Fourier theory 
discussed in Chapter 8 will be given. As with Schroeder diffusers, much can be learned 
by considering the simplest equations but ultimately more exact theories will be 
necessary to match experimental results. For simplicity, consider a 2D world so that 
predictions in one plane only are considered. The pressure amplitude, |ps|, reflected 

Figure 11.6 Two 1D hybrid surfaces where the shaded patches are reflective, and the clear patches 
absorptive. Constructed using a: (a) ternary sequence, and (b) binary sequence.
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from a planar surface with a spatially-varying impedance is given by:

 (11.1)

where ψ and θ and the angles of incidence and reflection; R(x) is the surface reflection 
coefficient at a distance x along the surface; k is the wavenumber; A is a constant, and 
s is the diffuser surface.

This is an approximate far field theory, which forms the basis of the hybrid surface 
design. This simple prediction theory and the subsequent design process are only 
applicable at mid- and high frequency. At low frequency the mutual interactions 
across the surface make the prediction model inaccurate, as shall be discussed later. 
Equation 11.1 is a Fourier transform in kx and transforms the reflection coefficients 
into [sin(θ) + sin(ψ)] space. To a first approximation, the absorptive parts of the hybrid 
surface will have a reflection coefficient of R(x) = 0, and the reflective parts have R(x) 
= 1. A pseudorandom number sequence with good autocorrelation properties is used 
to determine the spatial distribution of the hard and soft patches. For example, the 
number sequence might be {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0} and 
where there is a zero in the sequence a patch of absorption is used; where there is a 
one in the sequence the surface is reflective. Figure 11.6B illustrates a surface where 
the impedance variation is in one plane only, and the strips of absorption or reflection 
are extruded in one direction. Surfaces which scatter hemispherically, such as those 
shown in Figure 11.1, are formed from number sequence arrays; these are discussed 
in Section 11.8.1.

A number sequence with good autocorrelation properties will have a flat power 
spectrum with respect to kx. This means the pressure amplitude scattered is constant 
with respect to the transform variable sin(θ) + sin(ψ), which means good dispersion is 
generated in a polar response. If the surface is periodic, this will relate to grating lobes 
all having the same level except for the zeroth order lobe, in many ways similar to the 
theories behind Schroeder diffusers discussed in Chapter 9.

Consequently, the choice of number sequence is crucial to obtaining diffuse reflections. 
The initial development of this diffuser was carried out by Angus5 who began by 
looking at MLSs. These sequences are a good starting point as they have desirable 
Fourier properties. There are many other bipolar sequences which have flat Fourier 
transforms, but MLSs are the best documented and known. The issue of sequences is 
discussed in more detail in the next section.

11.5 Number sequences

To gauge the quality of a number sequence for a hybrid surface, the autocorrelation 
function can be examined. This is because the autocorrelation function directly relates 
to the scattering performance of the surface, see Section 9.4.

11.5.1 One-dimensional maximum length sequences

The reflection coefficients for the hybrid surface are 0 (absorption) and 1 (reflection) 
and consequently, the number sequence used should have optimal autocorrelation 
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properties for 0s and 1s, which means a good unipolar sequence is needed. Most 
pseudorandom binary sequences, on the other hand, have autocorrelation properties 
designed with a bipolar sequence composed of 1s and –1s. The autocorrelation side 
lobe performance of a unipolar and bipolar sequence can be very different. Figure 11.7 
demonstrates this for a MLS of length 7. When a sequence can be bipolar (positive and 
negative), the autocorrelation side lobes on either side of zero delay include cancelling 
effects, which enable a low side lobe energy to be created as desired. When the sequence 
is unipolar no cancellation can occur and the autocorrelation side lobe levels are higher. 
Consequently, it would be anticipated that the scattering performance would be worse 
for a unipolar sequence. The consequence of no cancellation is that the DC component 
in the power spectrum is large, as shown in Figure 11.8. This means that the energy in 
the specular reflection direction, when sin(θ) + sin(ψ) = 0, will be attenuated less for a 
unipolar surface in comparison to a bipolar surface.
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Figure 11.7 Autocorrelation function for a bipolar (+1s and –1s) and unipolar (+1s and 0s) 
MLS and a ternary sequence. The first is like a phase grating diffuser, the other 
two are like hybrid surfaces.

Figure 11.8 Comparison of power spectra for a bipolar MLS, a unipolar MLS and a 
ternary sequence.
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In a bipolar MLS the mean value of the reflection coefficients is close to zero, and 
consequently the DC value of its power spectrum is close to zero; see Figure 11.8. This 
means that suppression of the zeroth order lobe in the polar response, when sin(θ) + 
sin(ψ) = 0 occurs; see Figure 11.9. The construction of diffusers based on bipolar MLSs 
was discussed in Section 9.4.1; these are a type of Schroeder diffuser.

With a unipolar MLS a hybrid diffuser is being constructed. The mean value of the 
reflection coefficients is no longer close to zero. Indeed the D.C. value is actually higher 
than the other spectral values, and consequently the zeroth order lobe is significantly 
greater than other lobes. Figure 11.8 illustrates this by comparing the power spectra 
of unipolar and bipolar MLSs. Figure 11.9 shows the polar response for a diffuser 
constructed from bipolar and unipolar MLSs. This is evidence that the planar hybrid 
surfaces will have a significant specular energy lobe, with the zeroth order lobe being 
about 10 log10(N) times larger than the other lobe energies, where N is the length of 
the MLS. The specular reflection lobe will be attenuated by about 6 dB compared to a 
plane hard surface (as expected for a surface which is 50 per cent absorptive by surface 
area). The scattering lobes are not even for the hybrid surface, but the scattering in the 
specular lobe is reduced.

When the open area of the panel is about 50 per cent then the MLS is a good choice. 
The performance of the MLS when composed of unipolar elements is worse than 
when it is bipolar as shown above, but the MLS will still be the best possible sequence 
achievable; there are no better unipolar sequences, although there are some which 
are just as good. Problems arise if the open area of the panel needs to be reduced, as 
common optimal binary number sequences usually have a similar number of 0s and 1s.

   20

   40

(dB)
30

60

90

-90

-60

-30

0

   20

   40

(dB)
30

60

90

-90

-60

-30

0

Figure 11.9 Scattering from diffusers constructed using bipolar and unipolar maximum 
length sequences:
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11.5.2 One-dimensional optical sequences

There are a set of sequences, called optical sequences,6 which are unipolar and have a 
different number of 1s and 0s. Angus7 suggested that these could be used to overcome 
some of the problems associated with MLS. For instance, they can be used to form a 
surface whose open area is not 50 per cent. Optical sequences were developed for use 
in fibre optical code division multiple access (CDMA) processes. CDMA systems enable 
multiple users to use a single digital transmission line efficiently. Fibre optic CDMA 
sequences, where the light intensity is either on or off cannot have cancellation, and 
hence unipolar sequences are needed. They use an optimal sequence defined as one 
where the maximum of the side lobes of the autocorrelation function has the smallest 
possible value.

The problem with optical sequences is that the typical construction methods available 
result in a very low number of 1s in a long sequence. For example, a typical length 20 
sequence is {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0} which only contains 
five 1s and so would give a nominal open area of 25 per cent. This occurs because 
the sequences were devised for very low side lobe performance, which necessitates 
a low occupancy of 1s as this is the only way to achieve low side lobe energy in the 
autocorrelation function when no cancellation can occur. Unfortunately, for hybrid 
surface design this makes the sequences, especially the very long sequences, not that 
useful. The surface will either be very reflective (if the 1s are associated with absorption) 
or very absorptive (if the 1s are associated with reflection). Incidentally, the above 
sequence can also be written as {2, 4, 6, 11, 13}, where the index number gives the 
location of the 1s. For low occupancy cases, this is a much more compact representation 
of the sequences and so will be used below.

Optical sequences are usually generated in families. These are a set of sequences 
which not only have good autocorrelation properties, but also have low energies for 
the cross-correlation between family members. In an optical sequence, five parameters 
are used to specify their performance. ξ is the number of 1s in the sequence, N the 
length, M the family size (the number of sequences in the family), Sxxm the maximum 
side lobe value in the autocorrelation function, and Sxym the maximum value in the 
cross-correlation function between sequences in the same family. These parameters 
can be stated in an abbreviated form {ξ, N, M, Sxxm, Sxym}. For the length 20 sequence 
given above this would be expressed as {5, 20, M, 3, Sxym}.

There are some sequences with a reasonable occupancy, for example {3, 7, 1, 1, 1}, 
but the length of these sequences is too short to be of much use for hybrid surfaces. 
As with phase grating diffusers, a designer should always look to maximize the repeat 
length to minimize periodicity effects. This means that large N sequences are required, 
and then the number of 1s becomes too small using the normal optical sequence 
generation technique. Consequently, when N is large three construction techniques 
are suggested, as outlined below. In reality, a combination of techniques might be 
needed.

1.  This technique involves starting with a sequence with too few 1s and increasing 
the number of 1s. Given a {ξ, N, M, Sxxm, Sxym} family of sequences, it is possible to 
increase the number of 1s, but at the penalty of increasing the maximum value of 
the autocorrelation and cross-correlation. This is best illustrated with an example:
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A set of optical sequences {3, 25, 4, 1, 1} are: {1, 2, 7}, {1, 3, 10}, {1, 4, 12}, {1, 5, 
14}. The sequences are taken in pairs and a bit-wise OR taken between the pairs to 
form new sequences. So if both sequences have a zero bit, then the new sequence 
has a zero bit; otherwise the new sequence has the bit set to one. In the above case 
there are six unique combinations, as sequences are not combined with themselves. 
The new sequences are: {1, 2, 3, 7, 10}, {1, 2, 4, 7, 12}, {1, 2, 5, 7, 13}, {1, 3, 4, 10, 
12}, {1, 3, 5, 10, 13}, {1, 4, 5, 12, 13}. These form a new family of sequences with 
the property {ξ′ = 5, N′ = 25, M′ = 6, S′xxm = 2, S′xym = 3}, where the prime is used 
to denote the new sequence. The number of 1s has increased from 3 to 5, but both 
the autocorrelation and cross-correlation properties have degraded. The maximum 
side lobe value in the autocorrelation has increased from 1 to 2.

The above process in general produces new sequences where the number of 1s 
is ξ′ ≥ 2ξ – Sxym, where ξ and Sxym are the values for the original sequences. If too 
many 1s are generated after the OR operations, some 1s are randomly chosen to be 
changed to 0s. This was not necessary in the above example. The autocorrelation 
and the cross-correlation of the new sequences will be S′xxm ≤ 2Sxxm + 2Sxym and S′xym 
≤ ξ + 3Sxym respectively. In the construction example above, the new sequences are 
considerably better than the worst case given by these upper bounds. For diffuser 
design, repeated application of this process is likely to be needed.

2.  A very similar approach to (1) would be to take a sequence with too many 1s and 
reduce their number. For example, it should be possible to start from a family of 
MLSs and via logical operations reduce the number of 1s to the desired value.

3.  The last technique involves constructing a family of optical sequences and then 
concatenating these together. As the family will have mutual low correlation, they 
should work well in a concatenated longer sequence.

11.5.3 One-dimensional ternary and quadriphase sequences

Many of the standard construction methods for general ternary sequences are in-
appropriate because they do not generate the right balance of –1, 0 and +1 elements 
for hybrid surfaces. Many sequences have very few zero elements in them and conse-
quently the surfaces would not be very absorbing. This arises because most applications 
of number theory want to maximize the efficiency of the sequence – efficiency in this 
context meaning the power carried by a signal based on the sequence. The sequence also 
needs to have a similar number of –1s and 1s, because this maximizes the attenuation 
of the specular reflection.

Correlation identity derived ternary sequences6 can have an efficiency of ≈50 per 
cent, meaning that half the sequence are zeros, and will therefore have a nominal 
absorption coefficient of ≈0.5, provided the design parameters are chosen correctly. 
They are formed from two MLSs of order m and length N = 2m – 1; the order of the 
sequences must obey m ≠ 0 mod 4.

First it is necessary to find a pair of MLSs with suitable cross-covariance properties. 
The process is to form an MLS and then sample this sequence at a different rate to 
form a complementary sequence. For example, if the sample rate is Δn = 2 then every 
second value from the original sequence is taken. The sample rate is chosen using either 
Δn = 2k + 1 or Δn = 22k – 2k – 1. A parameter e is defined as e = gcd(m, k) where gcd() 



Hybrid surfaces 383

is the greatest common divisor. This must be chosen so that m/e is odd as this gives the 
correct distribution of cross-covariance values.

Under these conditions, the two MLSs have a cross-covariance Sab(τ) which has three 
values. The total number of 1s and –1s in the sequence will be given by ≈N(1 – 2–e). This 
is therefore the amount of reflecting surface on the diffuser, and so at high frequency 
it would be anticipated that the absorption coefficient of the surface, α, would be 
≈1 – 2–e. If the aim is to achieve a surface with α ≈ 0.5, this means choosing e = 1, which 
means the order of the MLS, m, must be odd.

Consider an example of N = 31 = 25 – 1. e is required to be a divisor of m so that m/e 
is odd and this can be achieved with k = 1 as this makes e = gcd(k, m) = 1. A possible 
sample rate is Δn = 3.

The first part of the MLS used is: {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 
1, ...}. Taking every third value then gives a second MLS: {1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 
0, 1, 1, 1, 1, 1, 0, 1, ...}. This then gives a cross-covariance (after the MLS sequences are 
made bipolar) where 7 occurs 10 times, –1 occurs 15 times and –9 occurs 6 times.

The ternary sequence, cn, is formed from this cross-covariance – a rather surprising 
and remarkable construction method. The sequence is 2–(m+e)/2(Sab(τ) + 1). This sequence 
has an ideal autocovariance with a peak value of 2m–e and out-of-phase values that are 
zero. Applying this to the above pair of MLSs yields the ternary sequence: {0, 0, 1, 1, 
–1, 1, –1, 0, 0, 0, 1, 1, 0, 1, –1, –1, 0, 1, 0, ...}.

The autocovariance indicates the advantages that might be expected from ternary 
sequence diffusers in comparison to unipolar binary sequence diffusers. The auto-
covariance functions for the ternary and unipolar binary sequences are shown in Figure 
11.7. The unipolar binary sequence has constant out-of-phase values, but they are 
not zero. This leads to diffusers with a significant specular component in their polar 
pattern. Perfection can be achieved using a ternary sequence as the out-of-phase values 
are all zero.

The ternary sequence has a good reflection coefficient autospectrum because it is 
constant; an example is shown in Figure 11.8. This means that a surface based on a 
single ternary sequence produces more even scattering than one using an MLS. For a 
periodic structure where many repeats of the sequence are placed side by side, this will 
result in all the grating lobes having the same energy.

11.5.4 Optimized sequences

For short sequences it is possible to use a computer search to find the best sequence. 
For a small sequence length, say N ≤ 20 for a binary sequence, it is possible to 
do an exhaustive search of every possible combination to find the best sequences. 
Every possible combination of bits with the correct number of 1s are tested by first 
constructing the autocorrelation function for each case, and then finding the sequence 
or sequences which have the smallest maximum value for the autocorrelation side lobes. 
As N increases, however, this rapidly becomes a very time consuming process to carry 
out. The number of unique combinations to search is given by:

 (11.2)
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where ξ is the number of 1s in the sequence and ! indicates factorial. Consequently, 
for N = 20, ξ = 10 there are nearly 200,000 combinations, and this roughly doubles 
for every additional bit.

For say 20 <N <48 a numerical optimization8 can be used to search for the best 
sequence. In this case optimization algorithms are used to avoid the need to test every 
possible combination, but even so this is still going to be a slow process. As computing 
power increases, this will be applicable to larger sequence lengths. But even with 
increasing computing power, the length of sequence over which optimization can be 
carried out is not going to rapidly expand. For an N = 48 binary sequence with 24 1s 
and 24 0s there are about 1013 unique sequence combinations to search.

Unlike the numerical optimization of Schroeder well depths discussed in Chapter 9, 
this is a discrete function optimization. In other words, the values of the optimization 
parameters, which are the locations of the 1s in a binary sequence can only take discrete 
values. This means the best algorithm for tackling this problem is a genetic algorithm 
as it can explicitly represent the discrete sequences as genes.

A genetic algorithm is a technique for searching for optimum configurations in 
engineering problems. Figure 11.10 illustrates how a typical genetic algorithm works. 
It attempts to mimic the process of evolution that occurs in biology. A population of 
individuals is randomly formed. Each individual is determined by their genes, in this case 
the genes are simply the binary sequence values, indicating where hard and soft patches 
should be placed on the surface. Each individual has a fitness value that indicates how 
good they are. In this case, it is the largest energy in the autocorrelation side lobes. 
Over time, new populations are produced by breeding and the old populations die. 

Start

Randomly form population of
N binary sequences

Calculate the fitness of each
sequence in the population

Select M sequences of the population to
breed and M sequences to die

Are all sequences in the
population equally fit?

No

Yes 'Optimum'
sequence found

Form new population with M new siblings
and N-M sequences from the previous

generation

M siblings generated using crossover and
mutation to create new sequences

Figure 11.10 Optimization of numerical sequences using a genetic algorithm.
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Offspring are produced by pairs of parents breeding. An offspring has a gene sequence 
that is a composite of the sequences from the parents. A common method for doing this 
is multiple point cross over. For each bit in the sequence there is a 50 per cent chance 
of the child’s bit coming from parent A and a 50 per cent chance of the bit being from 
parent B. Mutation is also used. This is a random procedure whereby there is a small 
probability of any bit in the child sequence changing during breeding. Mutation allows 
sequences outside the parent population to be made.

Selecting sequences to breed and die can be done randomly. As with conventional 
evolution theory, the fittest are most likely to breed and pass on their genes, and the 
least fit the most likely to die. By these principles, the fitness of successive populations 
should improve. This process is continued until the population becomes sufficiently 
fit, so that the sequence produced can be classified as optimum.

An additional advantage of using a numerical optimization is that it gives complete 
control over the reflectivity of the diffuser. This can be specified as a desirable char-
acteristic; any individual not having the desired reflectivity will be scored as less fit. 
Consequently, the trait of undesired reflectivity will die off.

Figure 11.11 shows the diffusion coefficient for a hybrid surface formed from an 
optimized sequence, compared to a hybrid surface formed from a random sequence. An 
improvement in performance is seen for most frequencies, although the improvement is 
not great. The main problem with this design technique is that it is impossible to find 
long optimal sequences, because the number of possible sequences to search becomes 
too large. One solution to this problem is to generate a family of good sequences of 
relatively low N with low mutual cross-correlation, and to concatenate them together 
to get a longer sequence. This is possible because during the optimization both the 
autocorrelation and cross-correlation properties can be considered at the same time.
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Figure 11.11 Normalized diffusion coefficient for three surfaces showing how an optimized 
sequence can improve on a random sequence (normal incidence):

  hybrid surface formed using a typical random sequence;
  hybrid surface formed using an optimized sequence; and
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11.5.5 Two-dimensional sequences

A hemispherical scatterer such as that shown in Figure 11.1 requires a 2D sequence, 
and this can be achieved by three methods:6,9 folding, modulation (Kronecker product 
in number theory) and periodic multiplication. Consider constructing a surface with 
dimensions (in terms of number of patches) of N × M. Whether a sequence can be 
constructed depends on the values of N and M.

Schroeder10 showed that a folding technique called the Chinese remainder theorem 
could be applied to phase grating diffusers based on polyphase sequences. D’Antonio1 
used the same technique for a binary hybrid diffuser. The Chinese remainder theorem 
folds a 1D sequence into a 2D array and yet preserves the good autocorrelation and 
Fourier properties. To use this method N and M must be co-prime. By co-prime it is 
meant that the only common factor for the two numbers is 1.

Consider a length 15 sequence which will be wrapped into a 3 × 5 array. The elements 
are sequentially labelled a1, a2, a3 … a15. The 1D sequence is written down the diagonal 
of the array, and as it is periodic, every time the edge of the array is reached the position 
is folded back into the base period. The process is illustrated in Figure 11.12.

Figure 11.13 shows another way of viewing this process. The coordinates (column, 
row) of the elements a1 … a15 are determined by modulo indexing. The subscript is 
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Figure 11.12 Left: some of the steps involved in folding a length 15 sequence, a1 … a15 into 
a 2D array using the Chinese remainder theorem. The right table shows the 
wrapping of the MLS sequence {1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0}.

Index, n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Column coordinate = n modulo 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Row coordinate = n modulo 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Figure 11.13 The Chinese remainder theorem expressed as modulo indexing.
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called the index, n. The column for element an is determined by n modulo 5 and the 
row is determined by n modulo 3.

This folding technique still maintains the good autocorrelation properties of 
the sequence. For example, Figure 11.14 shows the autocorrelation for a unipolar 
maximum length sequence folded into a 3 × 5 array. The same autocorrelation 
properties are achieved in terms of the side lobe energy values. The Chinese remainder 
theorem can be applied before or after the Fourier transform, as illustrated in Figure 
11.15. Consequently, the folding technique preserves the ideal Fourier properties.

Modulation is a process that allows diffusers to be arranged in a non-periodic 
fashion by modulating one or more base shapes with a binary sequence (see Section 
9.5). Another way of viewing the outcome of this process is that it forms a single longer 
length sequence. A very similar process can be used to form arrays using ternary and 
binary sequences and arrays. Two sequences (or arrays) are modulated together to form 
a longer sequence (or array).

To illustrate this, consider making a ternary array by modulating a ternary sequence 
with a perfect aperiodic binary array. (Note that it is important to modulate the array 
by the sequence and not vice versa.) Consider a length 7 correlation identity derived 
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Figure 11.14 The autocorrelation function for a unipolar N = 15 MLS sequence folded 
using the Chinese remainder theorem.
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ternary sequence a = {1, 1, 0, 1, 0, 0, –1}; this is used to modulate the perfect aperiodic 
binary array, b: 

=
11
11

b
 to form a 2 × 14 length array, c, given by:

 

This array has ideal periodic autocorrelation properties. As the binary array has no 
zeros, the modulated array has the same proportion of absorbent patches as the original 
ternary sequence; for long sequences, the proportion tends towards 50 per cent.

There is only one known perfect aperiodic binary sequence, the one shown above. 
Consequently, there are only six array sizes that can be constructed by this method 
with ≈50 per cent efficiency for NM ≤ 216.

The final design process is to use periodic multiplication. Two arrays can be 
multiplied together to form a larger array. Consider array 1 to be bp,q of size Nb × 
Mb which has an efficiency of Eb, and array 2 to be cp,q of size Nc × Mc which has an 
efficiency of Ec. Then the new array is a product of the periodically arranged arrays, 
bp,q · cp,q of size NbNc × MbMc and the efficiency will be EbEc. A necessary condition is 
that Nb and Nc are co-prime, and so are Mb and Mc, otherwise the repeat distance for 
the final arrays will be the least common multiples of Nb and Nc in one direction and 
Mb and Mc in the other.

For example, consider a 7 × 3 ternary array derived by folding a sequence made 
using a Singer difference set:7

 

This has an efficiency of 76 per cent. Consider also a perfect aperiodic ternary array d2:
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c and d2 can multiplied together to from a 21 × 6 array with ideal autocorrelation 
properties and an efficiency of 0.76 × 0.67 × 100 per cent = 51 per cent.

It is also possible to use a combination of these design methods. Perfect array 
construction methods, ones that produce zero side lobe energy in the autocorrelation, 
tend to generate rectangular grids of holes. It is even possible to construct optimal 
binary sequences on a hexagonal array pattern as well.

In the design it is necessary to consider the balance between 0s and 1s for binary 
sequences and –1s, 0s and 1s for ternary sequences. The right balance needs to be struck 
to achieve the desired absorption characteristic. For ternary sequences, a rough balance 
between the number of –1s and 1s is needed so that the specular reflected energy is 
sufficiently attenuated.

Once the array is formed any periodic section can be chosen and many other 
manipulations can be carried out while still preserving the autocorrelation properties. 
Procedures that can be done on their own or in combination include:

• Using a cyclic shift to move the pattern around: vqupqp bc ++= ,,  where u and v are 
integers and the indexes p + u an q + v are taken modulo N and M respectively.

• Mirror image the array: qpqp bc ±±= ,, .

• Invert the sequence: qpqp bc ,, = .

• Rotation by 90º: pqqp bc ,, = .

• Under sample the array: vqupqp bc ,, = , provided both u, N and v, M are co-prime.

These will not change the acoustic performance, but may change the visual aesthetic. 
These processes can also help to make the array more asymmetric, which can be useful 
in modulation.

The main problem in forming these arrays is that there is only a limited set of array 
sizes. It has been shown,11 however, that by relaxing the requirement for ideal auto-
correlation enables more array sizes to be formed. For example, where there are a large 
number of elements in a sequence, it may be possible to truncate the sequence, losing 
1 or 2 elements, and still gain good (but not ideal) autocorrelation properties. This 
type of truncation might then give the right sequence length for folding into an array 
with the desired size.

11.6 Absorption

Figure 11.2 showed the random incidence absorption coefficient for a planar binary 
surface with and without the perforated mask. This shows that the hybrid surface is 
behaving like the Helmholtz absorbers discussed in Chapter 6. It is possible to predict 
the absorption characteristics using the transfer function matrix method. Problems 
arise, however, because the hole spacing is not regular and many holes are too close 
together for the normal assumptions used when modelling sound propagation through 
a perforated sheet. Nevertheless, it seems possible to at least predict the trends of the 
absorption.

The amount of added mass in the holes determines the increase in absorption at 
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bass frequencies. For the BAD panel, if additional bass absorption is required, it is 
possible to reduce the open area (this will not be true for all geometries), as shown 
in Figure 11.16. Alternatively, thicker mineral wool layers can be used, or the panel 
can be spaced from the wall to effectively increase the backing depth and so lower the 
resonant frequency. The effect of changing the backing depth is shown in Figure 11.2, 
giving the expected trends.

The drop-off in high frequency absorption can be explained by the open area of 
the panel. In a simplistic analysis, a surface with a 50 per cent open area would be 
expected to have an absorption coefficient of 0.5 at high frequency. Figure 11.16 shows 
the effect of reducing the open area on the absorption coefficient. BEM predictions 
show that the absorption coefficient response is similar for ternary diffusers, if a little 
less smooth with respect to frequency. It is assumed that this is due to reflections from 
wells providing out-of-phase reflections when compared to other parts of the surface, 
and therefore waves combine to put energy into the reactive field.

11.7 Accuracy of the Fourier theory

The Fourier theory used so far in this chapter is approximate. The absorption coefficient 
measurements give information about the likely accuracy of the design principles based 
on this simple theory. Some of the key assumptions behind the theory are:

1.  The absorption coefficient of the soft patches is 1 and there is no phase change on 
reflection.

2.  The Kirchhoff boundary conditions are true.

The absorption coefficient of the soft patches is not 1 at low frequency because there 
is insufficient depth of mineral wool to cause complete absorption. At mid- and 
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low frequencies mutual interactions across the panel render the Kirchhoff boundary 
conditions inaccurate. The Kirchhoff boundary conditions assume that the pressure on 
the hard patches is twice the incident pressure and on the soft patches is just the incident 
pressure. This is only true when the patch width is large compared to wavelength. It 
is only at high frequency, when the wavelength becomes smaller, that the Kirchhoff 
boundary conditions will be reasonable. Consequently, the discussions above are really 
only true for the highest frequencies of interest. To put this another way, for a 50 per 
cent open area sample predicted with the simple Fourier theory, the absorption should 
be 0.5. Figure 11.2 shows that this is not achieved, for instance at mid-frequency the 
absorption is around 1.

Despite these problems, it is still possible to learn something from the Fourier theory. 
For instance, the theory shows that as with all diffusers, periodicity is a problem as 
energy gets concentrated in the lobe directions. Consequently, the repeat distance of 
the diffuser should be made as large as possible. This can be done using a modulation 
scheme, as discussed for Schroeder diffusers in Chapter 9 and curved surfaces in 
Chapter 10, or by designing the diffuser based on a large number sequence.

Consider using a modulation scheme where two different hybrid surfaces are used. 
One of these is denoted A, the other B. A wall is filled by arranging the hybrid surfaces 
according to a pseudorandom sequence, for example if a length 5 Barker sequence is 
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Figure 11.17 Autocorrelation properties for four sequences: (a) periodic; (b) modulated 
using inverse; (c) random length 1,651, and (d) one base shape modulation.
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used, the arrangement of the surfaces would be: AAABA. This is a method for reducing 
periodicity effects.

Modulation schemes pose problems for devices based on unipolar sequences. The 
most successful modulation scheme for Schroeder diffusers was to modulate a surface 
with a phase inverted version of the surface. In a unipolar device, it is difficult to see 
how exact broadband phase inversion can be achieved. However, it is possible to go 
some way to achieving the inversion and therefore good performance. Consider a 
unipolar maximum length sequence a, an approximate inverse sequence can be found 
by adding 1 modulo 2, so the inverse sequence is given by a + 1 modulo 2. These two 
base shapes can then be arranged in a pseudorandom order to form a modulated array 
to reduce periodicity effects.

For example, consider the top three graphs in Figure 11.17. Graph (a) shows the 
autocorrelation properties for a periodic sequence of 13 N = 127 unipolar MLS 
sequences. As expected, there are periodicity lobes every 127 units. This is compared 
in graph (c) to a random sequence of length 1,651 (=13 × 127) showing no periodicity 
lobes. A modulated arrangement is shown in graph (b) using a hybrid surface and its 
inverse. The ordering of the two surfaces was determined by the length 13 pseudorandom 
sequence with the best unipolar aperiodic autocorrelation properties. The effects of 
periodicity have been greatly reduced. Figure 11.18 shows the effects of the modulation 
in terms of a scattered level polar distribution. The modulation has removed the 
periodicity effects for the non-zero order lobes. In that respect the modulation has 
been successful, but the dominant characteristic of the polar response is still the zero 
order specular lobe. The only way to deal with this is to introduce some possibility of 
phase cancellation, for example by curving the surface or using a ternary sequence.

A ternary sequence can be more readily modulated with its inverse. For instance, if 
the first ternary sequence was {1, 1, 0, 1, 0, 0, –1} then the complementary sequence 
used in modulation is the inverse of this {–1, –1, 0, –1, 0, 0, 1}. The modulated 
arrangement is highly effective, but only over certain frequency ranges. When multiples 
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of half wavelengths fit into the ‘–1’ well, then the reflection coefficients of the ternary 
sequence and its inverse are identical, and undesirable periodicity lobes result.

Another technique for modulation would be to use two sequences from the same 
family with mutually good cross-correlation properties, although this does not work 
as well as the inverse process described above. It is also possible to modulate using 
number sequences of different lengths – a similar process was described for Schroeder 
diffusers in Chapter 9 where it was called orthogonal modulation.

As with Schroeder diffusers, it is possible to modulate a single asymmetrical base 
shape. The advantage of this technique is that it only needs one type of mask to be 
made. The mask shown in Figure 11.1 could be rotated by 90° and arranged with 
the original mask in a random arrangement. Brief tests on 1D sequences show this to 
be less successful than using two or more different base shapes. Graph (d) in Figure 
11.17 shows the autocorrelation coefficient for a 1D asymmetric single base shape 
modulation. In this case the sequence order is just reversed to give the second base 
shape. While not as good as the modulation using two base shapes (graph b), one base 
shape modulation still gives a better result than the periodic arrangement.

11.8 Diffuse reflections

Measuring hybrid surfaces to get the scattering performance is awkward. The normal 
measurement techniques described in Chapter 3 have used scale models of diffusers to 
allow measurements far enough away from the surface. For hybrid surfaces, accurate 
scale models cannot be easily produced because the impedance properties of porous 
materials do not scale in the same way as the wavelength in air. It would be possible 
to empirically find a substitute material to use in the scale models which has the 
appropriate impedance properties, but this is a rather tedious process. Nevertheless, 
diffusion measurements have been carried out on full-scale samples, even though the 
receivers and source are rather too close. For example, Figure 11.19 shows the scattered 
polar response from a BAD panel and just the porous backing material for the 1.25 kHz 
one-third octave band. The energy in the specular zone is attenuated by 6 dB. This is 
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exactly as would be expected for a 50 per cent open area panel. Additional side lobe 
energy is produced compared to the flat hard surface.

Consider an analysis now based on the simple Fourier model. Figure 11.20 shows 
polar distributions for one example frequency. For this comparison, five surfaces were 
predicted: a curved hybrid surface with a binary sequence of hard and soft patches; 
a plane hybrid surface based on the length 31 MLS; a plane hard surface; an N = 7 
QRD, and an optimized rigid curved surface. This last surface was 30 cm deep, which 
is typical of the non-absorbing diffusers used in performance spaces; the hybrid curved 
surface is much shallower, about 7 cm deep.

Moving from a flat hard surface to a plane hybrid device increases the dispersion, 
as was also found in the measurements reported in Figure 11.19. However, curving 
the hybrid surface produces more dramatic improvements. Interestingly, the quality of 
dispersion for the curved hybrid surface is only a little worse than the rigid optimized 
curved surface, which is four times as deep. This seems to indicate that a hybrid curved 
surface is a good method for generating more diffuse reflections from a restricted 
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depth, provided partial absorption is acceptable or wanted. It should be remembered 
that practical hybrid surfaces are often mainly absorptive up to about 2 kHz and 
consequently for these surfaces it is only at mid- to high frequencies that dispersion 
needs to be considered.

11.8.1 Boundary element modelling

It is known that the Kirchhoff boundary conditions are not accurate at low to mid-
frequencies and so the Fourier model used in the previous section is unreliable. Using 
boundary element modelling (BEM) it is possible to calculate the scattering over a 
hemisphere including interactions across the surface, provided the absorbent patches 
remain locally reacting. BEMs have been shown to give accurate results for hybrid 
surfaces before, when compared with measurements.12 They also give accurate results 
for Schroeder diffusers and consequently it would be anticipated that the BEM will be 
accurate for ternary diffusers as well.

First consider single plane predictions on a planar hybrid and a ternary device. 
Figure 11.21a shows the scattering for the one-third octave band centred on the design 
frequency; Figure 11.21b shows the scattering at an octave higher. At odd multiples of 
the design frequency (e.g. graph a) the well in the ternary diffuser provides waves which 
help cancel the specular reflection and so the device offers more even scattering and a 
reduced specular lobe in comparison to the planar hybrid surface. At even multiples 
of the design frequency, however (e.g. graph b), the scattering from the planar hybrid 
and ternary devices is similar. At these even multiples of the design frequency the waves 
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propagating in the well of the ternary diffuser return in phase with reflections from the 
flat sections of the device, and so the wells are ineffective. To overcome these critical 
frequencies at even multiples of the design frequency, more well depths must be introduced. 
If two different well depths are used, for instance, a quadriphase diffuser results.4
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Figure 11.22 Predicted normalized diffusion coefficient for three hybrid surfaces:
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Figure 11.23 Scattering from arrays of three surfaces at 3 kHz. Top left: BAD panel; top 
right: plane surface; bottom left: a perforated mask with regular hole spacing; 
bottom right: a random perforated mask. 3D polar balloons viewed from side.
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Figure 11.22 shows the normalized diffusion coefficient for three hybrid surfaces. 
It shows how a ternary diffuser improves over the planar binary surface for most 
frequencies, except in the one-third octave band centred on 4 kHz where there is a 
critical frequency for the ternary device. It also shows how using an additional different 
well depth in a quadriphase diffuser overcomes the critical frequency.

So far the performance of the ternary devices has only been discussed at harmonics 
of the design frequency. Between these frequencies the phase of the reflection coefficient 
offered by the well of fixed depth is neither –1 or +1. The waves reflected from this 
well will be partly out-of-phase with the waves from the flat parts of the device. 
Consequently, the performance is still improved over the unipolar binary diffuser for 
these in-between frequencies.

Now consider predictions for hemispherical devices. Unfortunately, the BEM model 
rapidly becomes too slow and consequently a thin panel, periodic formulation must 
be used, as outlined in Chapter 8.

Figure 11.23 top left shows the scattering from a 4 × 4 array of the BAD panel at 
3 kHz which is a MLS-based hybrid planar surface (shown in Figure 11.1). This is 
compared to a planar hard surface in the top right of the figure. The polar balloon is 
shown side on and it illustrates the drop in specular reflection energy as was found 
with the simpler theories. It also shows that a strong specular component still exists 
from the hybrid surface. The bottom left graph is for a perforated mask where the holes 
are regularly spaced. This shows that the side lobe performance is better for the BAD 

Figure 11.24 Hemispherical polar balloons. Top: 3 kHz; bottom: 400 Hz; left: BAD hybrid 
surface; right: plane hard surface.
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panel, confirming the usefulness of a pseudorandom hole arrangement for getting more 
diffuse reflections. The bottom right graph is for a perforated mask where the hole 
locations are determined randomly. The performance is similar, but slightly worse than 
the BAD panel. This shows the superiority of using pseudorandom number sequences 
rather than a random hole arrangement.

Figure 11.24 compares the scattering from the BAD panel to a plane surface at two 
contrasting frequencies. At the low frequency (the bottom half of the figure) the mineral 
wool is not providing much absorption and so the BAD panel behaves similar to the 
planar hard surface, although a little additional dispersion is achieved. At the higher 
frequency (the top half of the figure) the difference between the surfaces is marked, as 
would be expected, with the hybrid surface generating dispersion.

11.9 Summary

Hybrid surfaces offer another solution to room designers who want both reverberation 
control and diffuse reflections in a single device. Flat hybrid surfaces have a considerable 
advantage in being cheap and in the treatment being hidden. By adding a few wells, 
ternary and quadriphase devices can be formed which significantly improve performance. 
Alternatively, the hybrid surface can be curved to break up the specular reflection.
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12 Absorbers and diffusers in rooms 
and geometric models

So far, this book has discussed how to design diffusers and absorbers, but mostly in 
isolation of where and how they are applied. This chapter starts by presenting some 
of the issues arising from the application of absorbers in rooms, especially the issue 
of translating absorption coefficients between the free field, reverberation chamber, 
and real room applications. It then proceeds to discuss how absorption and diffuse 
reflection properties are represented in geometric room acoustics models and how this 
affects prediction accuracy.

12.1 Converting absorption coefficients

12.1.1 From free field to random incidence

In Chapter 3, various methods for measuring absorption were outlined. These included 
free field and random incidence techniques. Unfortunately, it is not easy to translate 
between free field and random incidence values for a variety of reasons and these 
will be discussed in the following paragraphs. Being able to translate from the free 
field measurements to random incidence values is extremely useful because the free 
field experiments are done in a controlled environment which is ideal for validating 
prediction models. To make these measured coefficients useful to practitioners, 
however, they need converting into random incidence values.

The translation from a set of angle-dependent free field absorption coefficients to a 
random incidence value is normally carried out using Paris’s formula:1

 (12.1)

where αs is the random incidence absorption coefficient, and α(ψ) is the absorption 
coefficient in the free field, at an incident angle ψ.

This formula is derived by considering the sound incidence on a surface in a diffuse 
space, the sin(2ψ) term arising because of solid angle considerations. If the surface is 
locally reacting, then it is possible to just measure the normal incidence impedance, 
apply the formulations given in Equations 1.21 and 1.24 to get the angle dependent 
absorption coefficient and, from Equation 12.1, to get the random incidence value. 
For a locally reacting surface a single measurement at 55° will suffice, as this is the 
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same as the random incidence value. Many surfaces, however, are not locally reacting, 
as discussed in Chapter 5.

Makita and Hidaka2 examined the problem of translating from free field to ran-
dom incidence coefficients for homogeneous and isotropic porous materials. They 
measured different polyurethane foams in the impedance tube and the reverberation 
chamber and compared the random incidence absorption coefficients, derived from the 
impedance tube measurement using Paris’s formulation, and the reverberation chamber 
measurements. Discrepancies arise because:

• The reverberation chamber is not completely diffuse, leading to the Paris’ formula 
being inaccurate and some angles of incidence being emphasized over others.

• Diffraction at the edges of the sample creates excess absorption in the reverberation 
chamber measurements. The impedance discontinuity at the edges of the sample 
causes additional sound to bend into the sample as this has a lower speed of sound.

• The mounting conditions are different, which may affect how the frame of the 
absorbent vibrates.

• The assumption of local reaction, so that small sample experiments in the impedance 
tube can be translated to a large sample measurement in the reverberation chamber, 
may not be correct.

Makita and Hidaka carried out a series of reverberation chamber measurements on 
the foams with different sample sizes to get the absorption coefficient of an infinite 
array using extrapolation. Figure 12.1 shows the inferred absorption coefficient for 
an infinite sample, compared to the 12 m2 sample, which is the recommended size in 
ISO 354.3 These absorption coefficients are shown for one typical sample of the six 
different foams tested. The average difference in the absorption coefficient, between 
the finite and infinite samples for all six foams, is also shown. Figure 12.1 illustrates 
that great differences in the absorption can be obtained due to edge effects, even if 
the edges of the samples are covered with a reflective frame, as is normal practice and 
required by ISO 354.
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from Makita and Hidaka2).
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Bartel4 examined the extrapolation from finite to infinite area absorption. The paper 
also contains a useful and comprehensive literature review of previous work in this 
area. The simplest model for the absorption coefficient extrapolation assumes a linear 
relationship. This can be represented by:

 
(12.2)

where α∞ is the absorption coefficient for an infinite sized sample; αs is the absorption 
coefficient for a finite sized sample, for example a 12 m2 sample in a reverberation 
chamber measurement; m is a constant, and E is the ratio of the specimen perimeter 
to the specimen area.

The sensitivity of the absorption coefficient to the perimeter parameter, E, varies with 
material type and frequency. Figure 12.2 shows a plot of the absorption coefficient for 
different perimeter to area ratios, measured in the reverberation chamber, illustrating 
that the edge diffraction effects can be very significant. This is with the edges of the 
sample covered with a reflective strip. Figure 12.3 shows how the value of the constant 
m varies with frequency and material type. Bartel also investigated the effect of sample 
shape. Sample shape only affected the absorption coefficient by at most 3 per cent, so 
the size of the perimeter to area ratio is much more important than the shape of the 
sample’s edge.
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To derive the constant m requires a series of measurements on different sample 
sizes in the reverberation chamber. Consequently, Equation 12.2 does not help derive 
random incidence absorption coefficients from impedance tube measurements because 
impedance tube experiments do not give values for m. Bartel4 reports, however, a 
formulation attributed to Northwood5 to allow the perimeter effect to be predicted, 
and so allow the translation from impedance tube to random incidence values. The 
normalized admittance β of the sample is measured in the impedance tube, and is given by:

 (12.3)

where z is the surface impedance, ρ the density and c the speed of sound in air.
The average absorption coefficient for a finite rectangular sample is then given by:

 (12.4)

where:
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where a = 2/E, and J0 and N0 are the Bessel functions of the first and second kind 
respectively. These formulations can also be used to gain random incidence predictions 
of absorbers based on the formulations derived in Chapters 5–7.

Makita et al.6 presented a revised Paris’s formula which accounts for inaccuracies in 
the cosine law formulation. The formulations derived are rather complex, but enable 
the effects of the boundary layer on the absorption to be accounted for. The boundary 
layer effect is not normally as big as the perimeter effect, but can still be significant.

12.1.2 From the reverberation chamber to real rooms

The problem of projecting from reverberation chamber measurements to whole room 
design has already been discussed in Section 3.4.1 in relation to audience seating. But 
seating is not the only surface to suffer from problems when making whole room 
predictions based on reverberation chamber measurements of absorption. Even when 
the inaccuracies in the absorption coefficient are numerically small, the inaccuracy in 
the resulting reverberation time in a space can be quite significant if large areas of the 
absorbent are used, as the inaccuracy in the total absorption will be large. The problems 
centre on two issues, edge diffraction and non-diffuseness.

1.  Edge diffraction: The sample size tested in the reverberation chamber is usually 
smaller than that applied in the real space. Consequently, there is more edge 
diffraction in the reverberation chamber than in the real space. This can lead to 
significantly different absorption coefficients between the two spaces. The solution 
to the edge effect problem could be to determine the absorption of the edges, as 
was done for seating in Section 3.4.1. Alternatively, it is possible to test different 
sample sizes in the reverberation chamber, and from there extrapolate to the sample 
size used in the real room. The formulations given in the previous section for the 
influence of sample perimeter can also be used to extrapolate the absorption of 
large sample sizes from the smaller reverberation chamber samples.

2.  Non-diffuseness: The acoustic conditions in the reverberation chamber and the 
real room may be very different. The reverberation chamber may be diffuse, while 
the real room is not diffuse. This could lead to the random incidence absorption 
coefficient measured in the reverberation chamber not matching the effective 
absorption coefficient in the real room. Actually, a more common scenario is that 
both the reverberation chamber and real room are non-diffuse, but they are non-
diffuse in different ways.

The effect of the diffuseness of the space is difficult to account for. If the non-diffuseness 
is generated in a simple manner, for instance all the absorption on one surface of 
the room, then there are reverberation time formulae that can deal with these cases. 
(Gomperts carried out a comprehensive review of reverberation time formulations.7) 
A modern solution would be to use a geometric room acoustic model to properly 
model the sound distribution in both spaces rather than assume a diffuse field. This 
is an appealing solution, but as shall be discussed in the next section, the application 
of absorption coefficients in computer models is not necessarily straightforward. For 
instance, what should be done with absorption coefficients greater than 1, which 
commonly arise from reverberation chamber measurements? If a geometric model is 
used, it is best if both the reverberation chamber and the real room are modelled, rather 
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than making the assumption that the reverberation chamber is diffuse. This requires 
the modeller to have access to the reverberation times with and without the sample in 
the reverberation chamber, and these are not usually available.

12.2 Absorption in geometric room acoustic models

Geometric models are becoming a core tool for practitioners and researchers designing 
or investigating the propagation of sound within a space. To gain accurate predictions 
from these models it is necessary for the geometric models to correctly model absorption 
effects, but this is not always straightforward.

Geometric room acoustic models calculate the sound propagation within a space 
using ray tracing,8 beam or cone tracing,9 image source,10,11 or hybrid approaches.12 
(Hybrid approaches are combinations of some of the other three methods.)13 They are 
high frequency approximations to the true sound propagation and do not properly deal 
with the wave nature of sound.

For readers unfamiliar with geometric models it is necessary to describe how the 
sound might be modelled, but for brevity only one type of modelling will be described, 
and readers are directed to the literature for further reading. Here ray tracing will 
be considered, as this is the easiest to describe. In this method, the sound energy is 
modelled as rays that propagate around the room like rays of light. When the ray hits 
a surface in the room it is reflected from the surface and, if no scattering is considered, 
the angle of reflection equals the angle of incidence. There is a receiver in a room, 
usually a sphere, and every time a ray passes through this, the reflection contributes to 
the energy impulse response. This process is illustrated in Figure 12.4.

Every time a ray reflects from the surface the energy of the ray is decreased by a 
factor of 1 – α, where α is the absorption coefficient of the surface. One problem 
is that absorption coefficient tables published in the literature often contain values 
greater than 1. How should these be translated into use in the geometric model, where 
values greater than 1 are meaningless? Furthermore, many geometric models are now 
producing auralizations of the sound field within the space to allow designers to hear 
the effect of design changes. To get a natural rendition of the sound field a wide audio 
bandwidth is required, yet absorption coefficient data is normally only available for a 
restricted bandwidth of 100 Hz to 5 kHz.14 These and other issues are discussed below.

Although a geometric room acoustic model has knowledge of the angle of incidence 
that a ray strikes a surface, it is usual for a random incidence absorption coefficient to 
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Figure 12.4 Picture of ray tracing in a room.
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be applied to every reflection. If local reaction is assumed, and the normal incidence 
impedance of surfaces are known, it would be possible to predict the absorption 
coefficient as a function of incident angle and use these in computer models instead. 
Nijs et al.15 examined this and found that for simple room geometries, in their case a 
reverberation chamber, angular dependent absorption coefficients made little difference 
to calculated levels and reverberation times. For a coupled room, however, Nijs et al. 
found that using an angular dependent absorption coefficient enhanced prediction 
accuracy. When using just random incidence absorption coefficients inaccuracies of 
15–20 dB between the predicted and measured sound pressure levels in the coupled 
space were found; when using angular dependent absorption coefficients this error 
dropped to 4–7 dB. It would be interesting to know how parameters such as early 
lateral energy fraction,16 which are highly dependent on correct modelling of early 
reflections, are affected by not using angular-dependent absorption, even in rooms 
with simple geometries.

One cause for the absorption coefficients to be greater than one in reverberation 
chamber measurements is that Sabine’s formulation17 becomes inaccurate when the 
absorption is high (α > 0.2–0.4). According to Sabine’s formula, a room constructed 
from completely absorbing walls still has a reverberation time greater than zero. A 
couple of authors have suggested that alternative reverberation time formulations 
should be used to calculate the absorption coefficients from the reverberation time 
measurements, as these absorption coefficients then give more accurate predictions in 
real spaces with geometric models. Nijs et al.15 used the Eyring18 equation to deal with 
some of the problems of excess absorption that occurs when using Sabine’s formula. 
Dance and Shield19 favoured the use of the Millington20 reverberation time formulation. 
These formulations can be found in Chapter 1.

The problem with using alternative reverberation time formulations to get absorption 
coefficients from reverberation chamber measurements is that the geometric room 
acoustic modellers need access to the reverberation times measured in the reverberation 
chambers to re-derive the absorption coefficients. The data that is generally available in 
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Figure 12.5 Chart and equation to translate from Sabine measurements of absorption 
coefficients, αs, in reverberation chambers to Millington coefficients, αm, to be used 
in real space predictions in geometric models (modified from Dance and Shield19).
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literature is just the calculated absorption coefficients, using Sabine’s formulation. 
Consequently, using other reverberation time formulations is awkward. Dance and 
Shield overcame this to a certain extent, however, by publishing a conversion chart 
to get from the Sabine absorption coefficients to the Millington values by carrying 
out some geometric room predictions which simulated typical reverberation chamber 
measurements. This chart is shown in Figure 12.5, along with an equation describing 
the relationship.

Figure 12.6 shows the reverberation times predicted for a concert hall from Dance 
and Shield. The top graph shows that classical reverberation time formulations are 
inaccurate in non-diffuse spaces, and using a geometric model can improve prediction 
accuracy – a finding also found by Antonio et al.21 and many others. The bottom graph 
shows that using absorption coefficients derived using a Millington formulation in 
geometric models gives more accurate results. However, in some cases not shown here, 
the findings are less clear cut.

Using more exacting reverberation time equations may help predictions, but it does 
not prevent measured absorption coefficients often exceeding 1, due to edge effects and 
the non-diffuse nature of the reverberation chamber. Nijs et al.15 recommend reducing 
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values measured in the reverberation chamber by 20 per cent as a good first guess 
for the input into a ray tracing program and hard limiting coefficients so they do not 
exceed 1. Summers22 points out, however, that there is a great variation in measured 
absorption coefficients between different reverberation chambers, a point borne out by 
the results shown in Figure 3.6. Consequently, the 20 per cent rule suggested by Nijs 
et al. is unlikely to generalize.

The work could be extended to include the effects of edge diffraction, which previ-
ously in this chapter have been shown to cause significant estimation errors in the 
absorption coefficients. The work also needs to consider inter-laboratory variation 
in random incidence absorption coefficient measurement. An alternative solution to 
the problem of mapping from the reverberation chamber to the real room is empirical 
fitting. As a surface treatment is used over time, an understanding of how the absorption 
coefficient varies between the reverberation chamber and real rooms is developed. If the 
reverberation time was underestimated this time, next time the modeller might put in a 
smaller absorption coefficient. This is obviously not very satisfactory, but it is the reality 
of applying many scientific models to engineering problems. This is why experienced 
geometric modellers usually produce better predictions than novices. This also creates 
problems in verification of computer models. Too often the absorption coefficients for 
surfaces are found by fitting predictions to match measurements, and then the same 
measurements are used to show that the numerical method works!

So far, the issue of phase change on reflection has not been considered. The true 
reflection from a surface should include changes in magnitude and phase, and 
consequently the pressure reflection coefficient or impedance is needed. This is 
problematical for many reasons. Impedance data for surfaces are not readily available. 
Furthermore, many building surfaces have non-local reacting behaviour which creates 
problems in measuring and implementing the phenomena in geometric models. For 
many predictions it is probably unnecessary to go into this detail, which is fortunate, as 
it would pose some difficult problems to overcome. For small rooms, however, standing 
wave modes cause significant problems for geometric prediction models.23

In recent years there have been round robin trials of geometric room acoustic 
models, comparing the accuracy of the different techniques.24 One of the key findings 
is that the accuracy of the prediction models is highly dependent on the quality of the 
input data, including the absorption coefficient of surfaces. So to summarize, defining 
absorption coefficients (and impedance) for geometric room acoustic models appears 
to be a tricky problem. Fortunately, experienced practitioners can usually produce 
estimations of absorption coefficients that are good enough, using previous knowledge. 
This is not an entirely satisfactory situation, as subjectivity should not be part of a 
prediction model.

12.3 Diffuse reflections in geometric room acoustic models

Early work on geometric models concentrated on the issue of modelling absorption. 
In recent years, much attention has been focussed on the modelling of scattering or 
dispersion from surfaces, often referred to as diffuse reflections. Geometric models 
inherently cannot precisely model sound as a wave. They approximate the sound to 
have a small wavelength, much shorter than any dimension within the room; this 
enables sound to be modelled as particles, rays, beams or as coming from image sources. 
Unfortunately, the wavelength of sound is relatively large at low to mid-frequencies 
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and, consequently, geometric models that do not attempt to predict the effects of surface 
and edge scattering are liable to produce inaccurate results. In real life, some incident 
sound will inevitably be scattered into angles other than the specular reflection direction 
upon reflection from most surfaces.

The problems of diffuse reflection modelling in geometric models are well established. 
For example, Hodgson25 used a ray tracing model that took diffuse reflections into 
account by redistributing diffuse energy according to Lambert’s law.1 He concluded 
that in simple empty rooms the effects of diffuse surface reflections are negligible in 
small or proportionate rooms, while in large disproportionate rooms the effects can 
be considerable. To take another example, in the first round robin study of room 
acoustic models,26 three prediction models were found to perform significantly better 
than others. These three prediction models produced results approximately within 
one subjective difference limen, while the less successful computer models produced 
predictions inaccurate by many difference limen. What differentiated the three best 
models from the others was the inclusion of a method to model surface scattering.

If the overall room shape and sizes and orientations of surfaces are such that they will 
cause reflections to be well mixed for purely geometrical reasons, a diffuse field may be 
created even if no rough or scattering surfaces are used. In this context, mixing means 
that the reflection paths involve all the surfaces of the room. For mixing room shapes 
the reverberation time can be well predicted even without diffuse reflection modelling, 
even if predictions of finer parameters such as clarity may suffer.27 However, as it is 
difficult to know in advance if a room shape is mixing, it is best to always include 
diffuse reflection modelling in a geometric model, as otherwise inaccurate estimations 
of acoustic parameters may result.

The most obvious error created by a lack of diffuse reflection modelling is an over-
estimation of reverberation time.28,25 This is especially true in enclosed spaces where 
absorption is concentrated on one surface, such as in concert halls, or when the room 
shape is highly disproportionate, such as in large factories. In some halls, the choice of 
scattering coefficients has a greater impact on the estimated reverberation times than 
the uncertainty in the absorption coefficients.29 Torres and Kleiner30 found that changes 
in the scattering coefficient in geometric models are audible in auralizations, and that 
the diffuse reflections should be modelled with frequency dependence. Gomes and 
Gerges31 also found that using correct scattering coefficient values in a diffuse reflection 
model was important for gaining accurate predictions for an auditorium. A more recent 
round robin on geometric models24 found that the biggest errors with geometric models 
were consistently at low frequencies, presumably because of their inability to model 
diffraction effects correctly because these are most prominent at low frequencies.

There are many different methods for incorporating diffuse reflections into a 
geometric room acoustic model. Dalenbäck et al.29 gave a comprehensive survey of 
the techniques. Many of the techniques are similar or just variants. Consequently, 
only a few of the most important and commonly used techniques are outlined here, 
and readers are referred to Dalenbäck et al. for a more comprehensive review. While 
there are many possible diffuse reflection methods, it is not known which modelling 
technique, if any, is intrinsically more accurate. It is known that a diffuse reflection 
model is needed for accurate predictions, but it is not known if one model is better than 
any of the others. One key determining factor is, however, the computing time. Accurate 
diffuse reflection models are relatively simple for low orders of reflections, but often 
become increasingly computationally expensive as the reflection order increases.
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12.3.1 Ray re-direction

This method is a ray scattering process as suggested by Kuttruff.1 A wall is considered 
to reflect a proportion of all the incident sound energy diffusely. The proportion of 
diffusely reflected energy is given by the scattering coefficient s, and this is distributed 
according to Lambert’s law. The remaining energy (1 – s) is reflected in a specular 
manner. The direction of the diffuse reflection is determined by two random numbers. 
The angle of azimuth is chosen by a random number in the interval {–π, π}, and the 
elevation angle is given by the inverse cosine of the square root of a random number 
that is chosen from the interval {0, 1}.

Concentrating all the diffusely reflecting energy into one direction is not true in 
reality, but this method is reasonable for the reverberant sound field, as there are a 
large number of reflections to average out the response. For the early sound field, where 
there are fewer reflections, the method is not so good however. Instead of giving many 
weak reflections from diffusing surfaces spread over time, a receiver gets fewer stronger 
reflections. This can, to a certain effect, be solved by generating multiple rays from the 
diffuser in multiple directions, but this then becomes very computationally expensive 
as the number of rays rapidly increases.

12.3.2 Transition order using particle tracing

The reflection calculation method is separated by a user-defined transition order.32 
Reflections with orders lower than the transition order are purely specular. After 
the transition order, sound rays are treated as energy packets similar to a normal 
ray tracing method. At each subsequent wall reflection after the transition order, a 
secondary impulse source is created at the reflection point, which radiates into the 
room as an elemental area source. The energy is then re-grouped into a ray and traced 
forward in a direction given by a random process in which either a purely specular or 
a diffuse direction will be chosen depending on whether the value of a random number 
generated by the program is greater or smaller than the wall’s scattering coefficient. If 
the reflection is diffuse, then its direction is determined by a second random process 
based on Lambert’s diffusion law.

The choice of transition order is dependent on the hall shape rather than size.33 In 
rectangular rooms, a transition order of 0 in low frequency bands and 1 to 3 in the 
high frequency bands is found to be appropriate. In fan-shaped halls, where correct 
modelling of the specular reflections is important to account for the influence of the 
hall geometry, a higher transition order is also required in the low frequency bands. 
Generally, the choice of transition order should be based on the importance of the 
specular components in the early reflections in defining the acoustic characters of the 
hall. An order of 1 or higher should be used only when the sound field is significantly 
affected by the specular components, such as at high frequencies or with strong 
reflecting surfaces. In real halls, where the sound field is expected to be more diffuse, 
lower transition orders should be used.

The main problem with this method of diffuse reflection modelling is that the concept 
of a transition order is not physically satisfactory, since diffuse reflections should 
occur even at the very first reflection, rather than suddenly being switched on at the 
transition order.
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12.3.3 Diffuse energy decays with the reverberation time of the hall

Upon each reflection the scattering coefficient is used to define the fraction of energy 
diffusely scattered into non-specular angles, while the remaining energy is reflected into 
the specular reflection angle in the usual way. The diffuse energy is ambient energy 
spread throughout the room volume. This energy is assumed to decay exponentially, 
the decay constant being determined by Eyring’s formulation. A visibility check is used 
to ensure that the right surfaces contribute to the received sound.34

The problem with this is that it assumes that the Eyring’s formulation is correct, 
which is not necessarily true, especially if the space is non-diffuse. Some have used 
an iterative procedure to gradually improve the estimated reverberation time, but this 
slows computation as it requires multiple passes through the algorithm.

12.3.4 Radiosity and radiant exchange

The diffuse part of a reflection is stored in memory while the specular ray tracing 
is continued. Later, the stored diffuse energy is emitted and all subsequent surface 
reflections are assumed to be diffuse. These methods use a stochastic radiative exchange 
process to propagate sound between surfaces. This radiosity can be modelled by 
integral equations, but more commonly uses simple heat exchange formulations. The 
radiant exchange takes place at a time interval given by the mean free time between 
reflections.

12.3.5 Early sound field wave model

Another suggestion is to use wave based models, such as a time domain Fourier 
approach, to model the early sound field before resorting to a ray tracing with 
randomized ray redirection for the later sound field. This has the advantage of 
potentially being more accurate in modelling the early sound field, which is more 
important for perceived sound quality, while allowing ray tracing to take over where 
it is computationally more efficient and sufficiently accurate.

12.3.6 Edge scattering for small surfaces

Scattering coefficients are often used to account for the scattering caused by both the 
surface roughness and also the limited size of surfaces and edge diffraction. It is possible 
to deal with surface roughness and the effects of limited panel size separately.35–37 This 
produces a more physically correct and robust model of scattering.

12.3.7 Distributing the diffuse energy

The models discussed above have many common features, one of which is that the 
diffusely reflected energy from a surface is modelled as radiating from the surface 
with a particular spatial distribution. In most current models, Lambert’s law is used 
to determine this distribution. Another possibility is to disperse the sound reflected 
from a surface using a probability distribution based on the scattered pressure polar 
response measured or predicted in the free field. Problems would arise because the polar 
response would be from a surface of significant finite extent, whereas many geometric 
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models would require the correct dispersion from a point on the surface. This needs 
consideration in designing the model, and a method to reverse engineer the point 
reflectivity function from the finite-sized polar response is needed. This can be done 
using Farina’s method for characterizing diffusers, which was discussed in Chapter 4. 
The situation is more complex with beam tracing as the beam may interact with part 
of a surface, and so the reflectivity function would neither be the point reflectivity 
function nor the finite-sized polar response. There is a further problem in dealing with 
situations where only part of the surface is illuminated, as might happen when objects 
cast shadows on surfaces, or with directional sources. Polar responses are usually 
measured or predicted using complete illumination by omnidirectional sources.

The most common dispersion law for computer models is Lambert’s law, also referred 
to as the cosine law. It states that the intensity scattered from a surface follows a cosine 
distribution with respect to the incident and reflected sound angle to the wall. This is 
illustrated in Figure 12.7 for a normal incident source. Stated in terms of equations 
for a ray tracing case:1

 (12.7)

where Ir is the reflected intensity at the surface; I0 is the incident intensity at the surface; 
θ the angle of the receiver to the surface normal; ψ the angle of the source to the surface 
normal; dS the area of the surface being considered, and r the receiver radius.

This formulation is a simple statement of solid angle projections. For instance, the 
solid angle is zero for sources and receivers close to grazing. If the surface is partly 
absorbing, then the intensity should be attenuated by the corresponding intensity 
reflection coefficient, but to simplify discussions, the surface will be assumed non-
absorbing in this discussion.
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Figure 12.7 Two views of the Lambert distribution of intensity. Left: 3D view; right: cross-
section.
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True rooms are not purely specular and nor are they purely diffuse following 
Lambert’s law; they are somewhere in between. For the reverberant field, however, 
the evidence is that the sound field more closely matches a diffuse case than a specular 
one,1 especially at mid- to high frequency.

Figure 12.8 shows the scattering distributions for a surface with 1, 50 and 99 per cent 
scattering, where the diffuse reflection is modelled using Lambert’s law. Also included 
for comparison in Figure 12.9 are the polar distributions for a periodic diffuser, a 
single cylinder, a plane surface and a surface with small random roughness. Each 
surface was 2 m wide and the source and receivers are in the far field. The scattered 
distribution, using the Lambert model, does not match many of the real surfaces very 
well for many cases. The closest is the random rough surface, which approximately 

Figure 12.8 Typical far field energy distributions in a geometric model for different values of 
scattering coefficient s and a normal incident source. Left to right s = 0.01, 0.5, 0.99.
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matches the s = 0.99 case. Consequently, room acoustic models are not producing 
scattering distributions close to real diffuser scattering. However, this is probably 
not that important for the reverberant sound field, where there are a large number of 
reflections over which the errors in any one diffuse reflection tend to average out, or 
at least mask any inaccuracies. It is more of a problem, however, for the early sound 
field, when precise modelling of first order reflections is needed.

Lambert’s law is a natural choice for room acoustic models because it is the 
asymptotic high frequency case, which is intrinsically the frequency range where the 
geometric models are most correct. Furthermore, it deals with scattering from a point, 
which fits with the philosophy of most models. Lambert’s law deals with high frequency 
incoherent scattering, but in acoustics the wavelength is often comparable to surface 
roughness. Indeed, diffusers such as Schroeder diffusers would not function as designed 
if the scattering were incoherent. In rooms incoherence is not achieved, just a vast 
number of different reflections which give the impression of lacking coherence. It is true 
to say, however, that at high frequencies the scattering from surfaces will approximate 
Lambert’s law. At the key frequencies for room design, and for first order reflections, 
some believe that it is better to approximate the scattering from specialist diffusers 
according to a uniform energy distribution rather than Lambert’s law in geometric 
room acoustic models.

There is a further problem with Lambert’s law with single plane diffusers. Single 
plane diffusers produce dispersion in one plane, and are very common in spaces; 
examples include pipe work, balcony fronts, 1D Schroeder diffusers and columns. 
Yet most current computer models disperse reflections according to Lambert’s law, 
scattering the sound in all directions over a hemisphere. This has the potential to cause 
prediction errors, again particularly acute for the early sound field or some coupled 
spaces. It might be thought that this prediction inaccuracy is less important for the 
later sound field, and indeed the averaging effect of multiple numerous reflections 
probably makes the model less sensitive to incorrect modelling of the reflections. 
In recent years, however, attention has been drawn to the importance of late lateral 
energy in auditoria38 and the role of spatial impression. Consequently, for a correct 
auralization of large music spaces, it may be important to correctly model the spatial 
distribution of late sound, and correct modelling of anisotropic scatterers is probably 
needed to achieve this.

12.3.8 Scattering coefficients

In Chapter 4 methods for measuring and analyzing the reflections from surfaces 
were given, including characterization, using a scattering coefficient. The scattering 
coefficient is intended to be used as an input to geometric room acoustic models. The 
success of the new scattering coefficient, however, appears to be mixed, with some 
suggesting that it works well within geometric room acoustic models, and others 
reporting problems.

Gomes and Gerges31 found that errors greater than 20 per cent in the early decay time 
can occur if the scattering coefficients are incorrect, and that errors greater than 30 per 
cent can occur if the absorption coefficients are incorrect. In contrast, Nijs et al.15 found 
that varying scattering coefficients had relatively small effects on predicted levels (3–4 
dB) in a complex coupled set of rooms, although Summers22 has questioned whether 
diffraction can be so insignificant in the coupled rooms they were considering.
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In the past there has not been a defined way to gain scattering coefficients for 
surfaces, so researchers have adopted an empirical approach to investigations. They 
have examined what scattering coefficients are needed to gain accurate predictions in 
rooms by a trial-and-error process. The results from these investigations are presented 
below as they give some guidelines as to what scattering coefficients might be used. One 
problem with getting the correct scattering coefficient using this approach, however, 
is the interrelationship between the absorption and scattering coefficients used in 
the geometric model, and the predicted acoustic parameters. The reverberation time 
predicted in a space will depend on both the absorption and scattering coefficients. 
The effect is most marked for disproportionate spaces or ones where the absorption is 
unevenly distributed. It is therefore not correct to determine the scattering coefficient 
by simply adjusting the reverberation time prediction until it matches measurement, 
as there is usually considerable uncertainty as to what the absorption coefficient of 
surfaces should be, and this also affects reverberation time.

Prediction models use various approaches to model diffuse reflections and consequently 
it is likely that different prediction models will require different values of the scattering 
coefficient, even for modelling the same wall under the same room conditions. Lam34 
investigated the scattering coefficients required for three different diffuse modelling 
algorithms, using scale models with largely smooth walls. In simple proportionate 
rooms, where the room dimensions are comparable, the predictions were similar 
whatever the method used to model diffuse reflections and the scattering coefficient 
applied. In a highly disproportionate room, however, the scattering coefficient required 
to gain accurate results varied with the algorithm used to model the diffuse reflections. 
The required scattering coefficient varied between 0.25 and 1 for the three geometric 
models considered. It was also found that different scattering coefficients were required 
to give accurate predictions of different acoustic parameters within the same prediction 
model. Out of the three models tested, the models present in Sections 12.3.2 and 12.3.3 
were most robust, and so were favoured by Lam.

Lam further investigated the effect of scattering coefficients in a concert hall. The 
trend with scattering coefficients is that going from a zero coefficient to a low value, say 
s = 0.1 or 0.2, can make a large difference to predicted acoustic parameters. Increases 
of the scattering coefficient from these low values create a much smaller effect.34 
Consequently, the sensitivity of volumetric acoustic parameters to scattering coefficients 
is non-linear. Figure 12.10 shows the early lateral energy fraction (ELEF) for different 
scattering coefficients in a real concert hall. Measurements are compared with various 
predictions. The difference limen for ELEF is about 0.075,39 so differences bigger than 
this value are significant. ELEF is chosen because it is probably the parameter most 
affected by the diffuse reflection modelling algorithm, as it depends purely on the 
early sound field. This shows that the predictions are sensitive to getting the correct 
scattering coefficients.

There will be cases, however, where accurate predictions cannot be achieved 
whatever the values of the scattering coefficients. This will be particularly noticeable 
for acoustic parameters which are very sensitive to the early sound field, such as 
clarity and early lateral energy fraction.16 The early sound field contains only a few 
reflections and consequently inaccuracies in the modelling of the sound field are most 
apparent. These cases show that the diffraction effects present in real life reflections 
are far more complicated than the simple scattering assumed in geometric models 
– as already indicated by Figures 12.8 and 12.9. It is only by summing over a large 
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number of reflections that the simple scattering assumptions can be regarded as valid 
approximations. Fortunately, in many situations there are enough reflections that 
inaccuracies tend to average out, but in some cases, such as coupled rooms and under 
deep balconies, this will not be true. Certainly, a geometric room acoustic model should 
not be used to evaluate first order reflection paths, unless surfaces are simple, large and 
planar or generate diffuse hemispherical dispersion.

Lam recommends that a good starting point for scattering coefficients at mid-
frequencies is to set the value to 0.1 for planar walls, as the value remains largely 
constant at around 0.1 in rooms of sizes ranging from 5,000 to 30,000 m3 and shapes 
ranging from rectangular to hexagonal.33 Certainly, the scattering coefficient should 
never be set to zero because even with smooth walls edge diffraction is important. 
Nijs et al.15 recommend lower scattering coefficients for plane walls of, at most, 0.02, 
although Summers22 could not get accurate predictions using such a low value with a 
different geometric model. Zeng et al.35 gives recommended mid frequency values of 
between 0.005 and 0.05 for smooth surfaces, and 0.05–0.2 for brickwork. Dalenbäck40 
recommends 0.1–0.2 as a minimum value on all surfaces, except very large planar 
surfaces where 0.08–0.1 is recommended.

Gomes and Gerges31 found that in cases where early reflections are few, a higher 
scattering coefficient (as high as 1) can be used to improve the accuracy of the predicted 
early decay time. In the lower frequency bands, the correct scattering coefficient can 
change from 0.1 in smaller auditoria (volumes less than 10,000 m3) to over 0.4 in 
larger concert halls (volumes about 30,000 m3). A slight increase in correct scattering 
coefficient values was also observed in models with more complicated shapes.

Lam set the scattering coefficient to 0.7 for seating,34 whereas Dalenbäck40 recommends 
0.4–0.7 for 125 Hz–4 kHz on audience areas and Zeng et al.35 0.6–0.7. For generally 

Figure 12.10 Variation of early lateral energy fraction (ELEF) with different scattering 
coefficients. The grid lines in the y-direction are spaced at the subjective differ-
ence limen.

   measured;
  s =0;
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  s = 1 (after Lam33).
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rough surfaces, Dalenbäck suggests high values of 0.8 where the roughness is of the 
order of, or higher than, the wavelength, and gradually lower below. For example, if the 
roughness scale is 0.3 m, set 0.8 for 1–4 kHz, 0.6 at 500 Hz, 0.3 at 250 Hz and 0.15 
at 125 Hz. He notes that there is generally greater risk associated with underestimating 
scattering coefficients than with overestimating them. Zeng et al.35 recommend mid-
frequency values of between 0.3 and 0.8 in large halls, where the geometric model has 
greatly simplified the geometry, and between 0.02 and 0.05 where the major details 
of the hall are explicitly modelled and the geometric prediction algorithm deals with 
finite-sized panel effects.

Scattering coefficients have also been used when modelling streets. Onaga and 
Rindel41 estimated values for the sum of the absorption and scattering coefficients 
for building façades ranging from 0.1 to 0.25. Ismail and Oldham42 found scattering 
coefficient values ranging from 0.09 to 0.13. Although these coefficients are relatively 
small the evidence is that, for late sound some way from the source, scattering is the 
dominant mechanism in street canyons. Kang43 found that changing the scattering 
coefficient from 0 to 0.2 had a significant effect on the sound level and reverberation 
parameters within city squares, but increasing the scattering coefficient beyond 0.2 
had much less effect.

As an additional approach to estimating scattering coefficients, Dalenbäck suggests 
testing for the sensitivity to diffusion settings. This is done by calculating acoustic 
parameters with an initial reasonable guess of scattering coefficients, and with diffuse 
modelling switched off. The modeller can then examine if the resulting acoustic 
parameters differ substantially. If the parameters vary greatly, then the scattering 
coefficients have to be more carefully estimated and it might be wise to include in the 
room design some options for final fine tuning of the reverberation time.

Appendix C gives a table of scattering coefficients for a variety of surfaces. These 
are correlation scattering coefficients, calculated using a method outlined in Chapter 
4. These were calculated using a 2D BEM and so represent single plane surfaces, such 
as cylinders. The use of the table values within a geometric model will take a little 
interpretation. It has already been shown that the scattering coefficient required in 
geometric models varies between different diffuse reflection modelling algorithms. 
One deficiency in the table data is the raised values for random incidence scattering 
coefficients at low frequencies. This arises because the scattering from the edge and the 
rear of the test sample is different from a flat surface; an empirical fix might be required 
to gain lower values at low frequencies. Furthermore, the predictions are for the plane 
of maximum scattering, whereas most diffuse reflection algorithms will interpret these 
values as being for hemispherically scattering devices and distribute the scattered energy 
according to Lambert’s law. So, although the predictions were produced using single 
plane scatterers, they will probably be better matched to hemispherical scatterers in 
many geometric models. The values in the table for semicylinders will probably better 
match the required values for hemispheres; the table values for 1D Schroeder diffusers 
will probably better match the required values for 2D Schroeder diffusers, and so 
on. When modelling a single plane device (cylinder, 1D Schroeder diffuser), it may 
be necessary to reduce the scattering coefficient table values if the geometric model 
distributes energy according to Lambert’s law using a single scattering coefficient.

This section has summarized the current state of knowledge on using scattering 
coefficients in geometric models. There are many gaps in understanding and knowledge, 
and many problems still remain and need further research.
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12.4 Summary

This chapter has presented some of the problems associated with going from isolated 
predictions or measurements of surface properties to whole room predictions. It has 
considered the problems associated with the use of absorption coefficients in simple 
statistical models, as well as the role of absorption and scattering coefficients in 
geometric room acoustic models. The next and final chapter will look at how active 
technology can provide absorption and diffuse reflections.
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13 Active absorbers and diffusers

The absorbers and diffusers discussed in previous chapters have difficulty altering 
low frequency sound. Low frequencies have long wavelengths, which means the 
absorbers and diffusers have to be large to perturb or absorb the wavefronts. This can 
be overcome to a certain extent by the use of resonant structures, most often used in 
bass absorber design, but in recent years there has been growing interest in the use of 
active control technologies to absorb or diffuse low frequency sound.

Active control offers the possibility of bass absorption or diffuse reflections from 
relatively shallow surfaces, as well as the possibility of variable acoustics. An example 
application for active absorption is the control of modes in small rooms . The cost and 
difficulties of implementation are, however, considerable and this is the major reason 
why this technology has not been more widely applied.

Active absorption has much in common with active noise control , indeed in many 
ways it is the same concept just re-organized behind a slightly different philosophy. 
Olson and May carried out pioneering active control experiments and they suggested an 
active noise control method based on interference.1 In their method, an electroacoustic 
feedback loop was used to drive the acoustic pressure to zero near an error microphone 
placed close to a secondary loudspeaker. This is illustrated in Figure 13.1. This was 
the first active absorber. More sophisticated active systems specifically alter the surface 

controller

primary source(s) e.g. stereo

loudspeakers in sound reproduction

secondary or control

loudspeaker

Figure 13.1 Schematic of active absorption in a small room. In this case, a microphone close to 
the secondary loudspeaker is used as an error signal for the controller to minimize.
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impedance of the control loudspeaker towards a desired target value. They may be 
configured as feedforward or feedback devices and are often constructed around 
single channel, filtered-x least mean square (LMS) adaptive filter algorithms. Recent 
developments have moved away from the use of superposition or interference. Resistive 
material is used in front of the active surfaces to gain actual energy dissipation by, for 
example, using the active system to maximize the particle velocity through the material; 
this concept was also first suggested by Olsen and May.

13.1 Some principles of active control

In this section some basic principles of adaptive filtering and active control are outlined 
for readers unfamiliar with these concepts.

The particular form of a control system is dictated by the physics of the environment 
in which it operates and the control task to which it is set. However, broad classifications 
of control systems exist which are useful in differentiating between certain very different 
approaches to the control problem. These classifications distinguish feedforward 
from feedback control systems, which may or may not be adaptive to changes in their 
operating environment.

Consider the system in Figure 13.2. The signal s is corrupted by the addition of the 
noise signal n at the first summing node, generating the observable signal d. At the 
second summing node, a signal y is subtracted from d. The result of this subtraction 
is the error signal, e.

• If y = n, then the noise corruption on the signal s is removed, e = s; this is the 
ideal.

• If y is a reasonable approximation of n, then some of the noise contamination 
is removed, e ≈ s; this is more realistic of what happens with active control 
systems.

• If y is largely uncorrelated with n, then the second summing node represents 
an additional source of noise, further corrupting the signal s in e; this is to be 
avoided.

The cancelling signal y is derived by filtering operations – through the filter block W 
which is an adaptive filter, i.e. a filter that can change its coefficients to achieve the 
required control – on the reference signal x. The optimal configuration of the adaptive 
cancelling filter, W, is the inverse of the filter relating n to x. Then, the noise added 
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Figure 13.2 A basic active noise control system to remove noise n from signal s.
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at the first summing node is perfectly cancelled at the second summing node. Such 
perfect performance is never achieved in practice for several reasons, most important 
among which are the imperfect implementation of the cancelling filter and the imperfect 
correlation between the noise n and the reference x.

Consider the problem of imperfect correlation. The attenuation of the noise 
component in d is a function of the coherence between the noise and reference 
signal. The attenuation increases as the coherence increases, and useful levels of noise 
attenuation can only be achieved with high coherence between the reference and the 
noise signal; this can pose problems in electroacoustic applications.

Ideally, an analytical solution for the necessary filter W would be derived; however, 
computing the coefficients of the filter W is usually a non-trivial problem. Fortunately, 
a computationally efficient iterative approach to the identification of the necessary filter 
coefficient exists; this is an adaptive filter running under the LMS  algorithm.

The technique uses an iterative search process to find the filter W that minimizes 
the error e. The LMS algorithm discovered by Widrow and Hoff2 has been found 
to be robustly stable in many practical applications. It is also a clear, simple and 
computationally efficient approach for identifying W. There are other techniques for 
solving minimization problems, but the LMS approach forms the basis of most adaptive 
noise cancelling systems.

The weights of the filter W are updated using the following equation. The coefficients 
of the adaptive filter at the k + 1 iteration are given by:

 
(13.1)

where subscript k refers to iteration number; Wk is the vector of adaptive filter 
coefficients at iteration k; ek is the error; α is the update rate; and xk is input to the 
adaptive filter.

The performance of the LMS algorithm is illustrated below by an example which 
is also supplied in the MATLAB script simple_lms.m. A simulation of a discrete time 
implementation of Figure 13.1 was coded, in which:
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Figure 13.3 Removing noise from a sine wave using active control.
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(13.2)

A length 2 adaptive filter W was updated using the LMS algorithm (Equation 13.1) 
with s as a simple sinusoid and x a random process.

The error signal is shown in Figure 13.3. The initial noise is seen to be quickly can-
celled leaving a sinusoidal wave, the signal s. The decay of the noise follows a roughly 
exponential form, which is due to the convergence behaviour of the LMS algorithm 
approximating the first-order convergence of a steepest descent algorithm.

The convergence of the two coefficients of the adaptive filter W is shown in Figure 
13.4. The weights are seen to approach the optimal values implied by Equation 13.2. 
This is very similar to the system shown in Figure 13.2 except that the white noise sig-
nal is fed direct to x and then filtered to get the signal n.

Having studied some fundamentals of noise cancelling, it is now possible to consider 
the practicalities of active impedance systems.

13.2 An example active impedance system and a general overview

Figure 13.5 shows a possible feedforward controller for an active impedance system.3–6 
While there are other possible set-ups, this system allows some of the general principles 
to be explained. A signal generator is driving the primary source in the top left of the 
diagram. The role of the primary source is to generate acoustic waves for the controller 
to operate on. In the diagram shown this is constrained within a pipe (shown dotted), 
but it could be within other spaces. The sound from the primary source then propagates 
to the control surface (secondary loudspeaker) shown top right.

The control surface is instrumented to sense pressure and velocity. Consequently, 
the impedance at the surface of the controller is known. Using an LMS algorithm, it 
is possible to alter how the control loudspeaker moves to force the surface impedance 
to be some desired value.
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Figure 13.4 Filter coefficients for filter W during training.
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The velocity vk at the control surface is sensed by integrating the output from 
a miniature accelerometer mounted on the cone surface. An alternative technique 
would use two closely spaced microphones.7,8 The pressure is measured using a 
surface microphone. This pressure is then passed through the filter Fd. Fd is the desired 
admittance, and consequently, the signal dk is the desired velocity. The desired and 
actual velocity are subtracted to give an error signal, ek. If this error was zero, then the 
surface admittance is as desired. If the error is non-zero, then the LMS algorithm is 
used to change the weights of the adaptive filter W, to reduce the error. Consequently, 
there is an adaptation time over which the error gradually converges to a small value, 
preferably zero. Setting the correct value for the update rate given in Equation 13.1 is 
crucial to achieving training – too large a value and the system never converges, too 
small a value and the convergence is very slow. There can be problems with instability 
during training.

The input to the adaptive filter is a signal xk which must correlate with the primary 
source signal otherwise the control surface just adds additional noise. This signal can 
be derived from two places, forming either a feedback or feedforward system. In a 
feedforward case, the signal xk is an electronic feed from the primary signal source. 
This is the case shown in Figure 13.5. The great advantage of feedforward is that it 
forms a stable system and no unstable feedback can occur. The disadvantage is that an 
electronic feed from the source signal is required, which means the active surface could 
be used with electroacoustic sound reproduction systems such as stereo systems, but 
not sound production systems such as acoustic musical instruments or speech.

In the feedback case, a microphone picks up the signal from the primary source, as 
illustrated in Figure 13.6. This can actually be the miniature microphone on the surface 
of the control loudspeaker. With this system, however, there is potential for instability, 
as a loop is formed which will become unstable if the gain of the loop exceeds 1. The 
solution to this problem is to insert a feedback compensation filter F1 which is designed 
to cancel the feedback path. The feedback cancellation is awkward, however, and if 
not entirely successful the system will go unstable. Alternatively, highly directional 
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Figure 13.5 A feedforward active impedance control system.
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loudspeakers and microphones can be used to steer energy from the control source 
away from the microphone connected to the reference input, but performance is then 
frequency dependent.

The usual system is to train the coefficients of the adaptive filter, and once the error 
is sufficiently low, to fix the coefficients. In this example, adaptation is used purely as 
an efficient method for obtaining the filter coefficients W which may not be analytically 
derived.

In order that the impedance converges to the correct value, the measurements must 
provide a true and accurate measurement of the actual ratio of the pressure to the 
particle velocity. Any error in these measurements will result in convergence to a value 
other than that desired by the user. For instance, transduction will introduce non-flat 
frequency responses onto the signals. C1 is called the plant model, and its role is to 
compensate for the frequency responses of the transducers and other components. The 
filter which models the plant is that referred to in the phrase ‘filtered-x’.

The design of the plant model presents significant problems. It may be sufficient 
to measure the frequency response of the plant off-line with a noise or impulsive test 
signal, and fit this with a finite impulse response (FIR) filter providing a reasonable 
estimate of the actual plant response. The accuracy of the plant model appears to 
determine whether or not convergence of the filter will be achieved, and over what 
timescale adaptation may take place without the risk of instability.9

There is some tolerance to plant model errors, which is fortunate since sometimes 
the object of employing an adaptive active control system is to enable a controller to 
track changes in its environment during operation. Any such changes will introduce 
errors between the assumed and the current plant response. Where gross run-time 
alteration of the plant response is anticipated a run-time measurement of the plant 
which continually updates filter C1 may be employed. This has been attempted using 
maximum length sequence (MLS) signals at very low levels presented simultaneously 
with program material.10

In fact, while people may refer to the active absorption systems as adaptive, this 
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Figure 13.6 A feedback active impedance control system.
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is a rather misleading name in many cases. The system might be adaptive during the 
training of the system, but it is most often used with the adaptation turned off, as 
to do otherwise risks instability in operation. But without adaptation the system is 
vulnerable to changes in the physical acoustics such as temperature changes and room 
occupancy.

A theoretical analysis of the significance of transduction errors for active impedance 
control in a 1D waveguide is presented by Darlington et al.,11 along with measured 
results derived from the intentional perturbation of pressure and velocity control 
signals. It is concluded that the transducers and associated signal-conditioning circuits 
should be calibrated to within 1 dB magnitude error and 5º phase error in order to 
achieve an absorption coefficient greater than 0.95. This analysis is helpful in that it 
identifies the significance of transduction errors, but a discussion of the measurement 
method itself and its relation to a theoretically modelled ratio of pressure and velocity 
at the surface of a loudspeaker cone is not attempted. This relationship is important 
in two ways.

Physical measurements of the impedance at the loudspeaker cone depend on two 
factors – the correct transduction of cone velocity and a suitable measurement of the 
pressure at the cone surface. Velocity measurement can be done via a two-microphone 
method or an accelerometer, but the position of the accelerometer is shown to be 
crucial. Nicholson reports3 that at frequencies as low as 150 Hz significant differences 
appear in the magnitude and phase of the velocity between accelerometers mounted at 
different points on the cone, as the local mass load encourages the onset of non-pistonic 
motion. Accelerometer locations where the dust cap meets the cone are most suitable. 
Nicholson also investigated microphone locations immediately adjacent to the control 
source cone and found that a frame mounting 5 mm from the dust cap was best. It is 
important that the microphone does not pick up the effects of the cone vibration (the 
velocity) as otherwise the system becomes unstable.

Having given some sense of how an adaptive system might work in principle, the 
following sections detail the application of these types of controllers.

13.3 Active absorption in ducts

When the system described in Section 13.2 is constrained to 1D plane waves, the 
controller is very successful. This would be the case for low frequency control within 
ducts. Figure 13.7 shows the modes in a duct with the controller turned off (so the 
termination is the control loudspeaker, which is not being driven, the termination 
impedance being dictated by the mechanical characteristics of the loudspeaker). The 
plot shows the steady state response (t = 0) and the resulting decay when the primary 
source is turned off. Figure 13.8 shows the same situation but with the controller in 
operation. The ability of the controller to damp the modes and therefore make them 
decay faster is evident. In this case the target impedance for the active surface was the 
characteristic impedance of air for plane waves.

13.4 Active absorption in three dimensions

It is possible to train the active absorber in a duct to a characteristic impedance, turn 
the adaptation off, and then use the system within a room. Unfortunately, in this case 
only small reductions in pressure are obtained. The controller surface does achieve 
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high absorption coefficients, however. Furstoss et al.12 report absorption coefficients 
of about 0.9, but only close to the loudspeaker cone. Consequently, while a high 
absorption coefficient is achieved, the total absorption added to the room is rather 
small and so there is little effect on most spaces.
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Figure 13.7 Waterfall plot of decay of modes in a 4 m duct, controller off (after Avis5).
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Figure 13.8 Waterfall plot of decay of modes in a 4 m duct, controller on (after Avis5).
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In a 3D environment the relationship between the control source’s surface impedance 
and the modal behaviour of the room is not simple. The sound field in the room is not 
plane, although it can be considered to result from the sum of a number of normal 
modes which individually are plane waves.13 There exist three orthogonal coordinate 
axes for particle velocity rather than the single axis within the duct, and the velocity 
of the controlling driver may lie in the plane of one coordinate or perhaps none of 
the three. The meaning of a characteristic impedance is therefore no longer clear, and 
hence it follows that the solution for the duct is unlikely to result in optimal control in 
the room. Consequently, a different target function is required. For instance, it might 
be possible to train the system to minimize the pressure at one or more points in a 
room. This is then a traditional active control system, and more on these can be found 
in Nelson and Elliott.14

Alternatively, it is possible to consider the relationship between surface pressure and 
velocity in terms of the power radiated by the source. It can be shown that in certain 
circumstances the power radiated becomes negative, corresponding to absorp tion of 
energy by the source. When a pistonic sound source radiates acoustic power at low 
frequency, the power radiated is proportional to pv*, where v is the velocity, p the 
total pressure and * indicates a complex conjugate. If the velocity of the source can be 
controlled to minimize the power radiated, which is equivalent to maximizing the in-
going intensity, the source is then absorbing acoustic power. This has, however, rather 
simplified the situation as the pressure across the cone is not constant, and the total 
pressure at the cone will contain direct and reflected components from the primary 
and secondary sources. The risk with maximizing the in-going intensity is that the 
controller will achieve this by maximizing the pressure, and so the sound pressure 
levels within the room will actually increase. For this reason, this control target is 
rather problematical.

Another problem with this system is that there is no energy dissipation . The active 
absorption is generated by superposition or interference. In effect, the active control 
system works by changing the radiation impedance of the primary sources rather 
than by absorbing energy from waves in the room. Consequently, what these active 
absorbers achieve is a reduction in radiated power.15 To really achieve absorption 
requires a proper energy dissipation mechanism, and this can be achieved through 
hybrid designs, discussed in Section 13.5. In the following two sections, however, some 
experimental results from modal control using adaptive and non-adaptive techniques 
are presented.

13.4.1 Low frequency modal control – example results

Consider the system described in the previous section. This system will be used to 
try and deal with low frequency modes that are present in a room. Figures 13.9 and 
13.10 compare the pressure distribution of the primary axial mode in a room with the 
controller on and off. In this example, the controller reduces the steady state pressure 
in the mode by about 6 dB. In this case, a single 8 inch loudspeaker is capable of almost 
halving the decay time of the first axial mode.

These systems work for single modes well isolated in frequency. As soon as modes 
become degenerate the active controller has problems. If many modes need to be 
controlled, many control loudspeakers need to be used. There is probably a need for 
one control loudspeaker per mode. Consequently, a full control system is going to be 
expensive to implement.
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13.4.2 Low frequency modal control – alternative control regime

Adaptive systems incur significant cost, both in terms of hardware and in terms of 
constraints on operation due to stability and convergence issues. This has motivated 
several authors to look for other non-adaptive control regimes for modal control.16–19 
Below is a short description of one of these. Avis17 examined an analytical modal de-
composition to derive a control filter which acts to reduce the modal quality factor 
by relocating system poles. The aim was to go further than conventional steady state 
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Figure 13.9 Distribution of pressures in a small room for the main axial mode (about 
44 Hz); controller off (after Avis5).
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Figure 13.10 Distribution of pressures in a small room for the main axial mode (about 
44 Hz); controller on (after Avis5).
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equalization, since the detection of bass modes is more related to time than frequency 
domain artefacts.20 Additionally, this has potential for controlled equalization across 
the whole sound field.

A sound field in a room can be expressed as a modal decomposition.21 This implies 
that the sound field may be considered as the sum of a large number of second-order 
functions; these functions can be implemented as infinite impulse response (IIR) 
biquad filters. The coefficients of these filters are determined by fitting responses to 
measurements in the physical sound field. Figures 13.11 and 13.12 show an example 
of the fitting of magnitude and phase for two modes in a small room.
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Figure 13.11 Example fitting of measured magnitude of  modal response to 
 biquad model (after Avis17).
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Figure 13.12 Example fitting of measured phase of  modal response to 
 biquad model (after Avis17).
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A secondary source is used to radiate pressures, which combine with the natural 
sound field of the room to generate modes with smaller Q factors, i.e. ones that decay 
faster. Figures 13.13 and 13.14 show a typical result. The controller is formulated 
such that the poles of the controlled sound field are relocated further away from the 
unit circle than the uncontrolled case. The controller works well at the measurement 
point used to fit the IIR filters, but operates less effectively at locations remote from 
that point.

This system can be used to control multiple modes simultaneously. Because the 
control technique mimics additional damping, the time, frequency and spatial aspects of 
the modal nature of the sound field are all addressed simultaneously and in sympathy. 
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Figure 13.13 Effect of biquad controller designed for a single mode at 44 kHz (after Avis17).
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The effectiveness of control is again limited to situations where the modes are widely 
spaced and not degenerate. The sensitivity of this control regime to changes in room 
conditions is unknown. Presumably it would be necessary to regularly recalibrate the 
system for the damping to remain efficient.

13.5 Hybrid active–passive absorption

The above adaptive systems have not had explicit dissipation mechanisms included; 
they have worked by a process of interference or superposition. It makes sense to 
try to include some form of real resistance as better performance can be achieved. 
Consequently, this is a hybrid approach involving the combination of absorbent 
material with an active controller. Indeed, Olson and May1 considered the possibility 
of using their secondary loudspeaker to absorb sound by placing it behind acoustically 
resistant cloth and to use the active controller to maximize the dissipation of energy 
in the cloth. A concise summary of the development of the hybrid approach is given 
by Smith et al.22

Furstoss et al.12 picked up the hybrid concept in the 1990s and made it into a useable 
device. It is mostly their work which is reported below. A piece of resistive material 
is placed in front of the active element, and the absorber is made efficient by creating 
a virtual quarter wavelength resonator behind (as though the resistive material is a 
quarter of a wavelength from a rigid wall). A typical set-up is shown in Figure 13.15. In 
the example shown, the surface of the control loudspeaker is instrumented to measure 
velocity and pressure, and this is used as inputs to an active controller, which drives 
the control loudspeaker. The controller is tasked with setting the appropriate backing 
impedance condition. The active control system avoids the need for a large air gap as 
would be required for a passive resonant absorber at low frequency. Furthermore, it 
can produce broadband efficiency rather than the limited bandwidth achieved by the 
passive quarter wave resonant absorbers.

At low frequency the pressure drop across the resistive material can be given by the 
flow resistivity and particle velocity:

 (13.3)d
v

pp
=12

controller
resistive material

incident sound

Figure 13.15 A hybrid active–passive absorber.
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where p2 and p1 are the pressures at the front and the rear of the resistive material; v is 
the particle velocity; σ is the flow resistivity, and d the material thickness.

If the active element renders the backing pressure to be zero (as would be the case 
with a quarter wavelength tube), the impedance of the layer is:

 (13.4)

This is the flow resistance of the resistive material, which should be set to the char-
acteristic impedance to maximize absorption.

Therefore, an alternative set-up is to place a microphone at the rear of the porous 
material, and a controller is then tasked with minimizing the pressure at microphone. 
Figure 13.16 shows the results from such an arrangement. High absorption across a 
relatively wide frequency range is achieved. Absorption is not as high for oblique incident 
sound, averaging around 0.6–0.7 for an angle of incidence, ψ = 60°, because for that case the 
optimal backing pressure for maximum absorption is no longer zero (see below). 
When used in an array of active absorbers, good performance is achieved although 
transduction problems limit the useful frequency range to 1 octave around 280 Hz.

While the above regime works for low frequencies, this anechoic termination 
becomes less successful as the frequency increases. Furstoss et al.12 showed that a better 
termination criterion is obtained by considering the optimal backing impedance more 
completely. Consider a porous layer between two fluids as shown in Figure 13.17. The 
impedance at the front face can be found using the transfer matrix approach described 
in Chapters 1 and 5. The impedance at the back face is:
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Figure 13.16 Absorption coefficient for a resistive material with and without an active controller 
backing minimizing the pressure at the rear of the material. The distance r refers 
to the distance of the microphone from the centre of the control loudspeaker:

  material with rigid backing;
  hybrid absorber, r = 10 cm; and
  hybrid absorber, r = 0 cm (after Furstoss et al.12).
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(13.5)

where zf is the impedance on the front face and kx is the component of the wavenumber 
in the porous layer in the x-direction (which can be found from Equation 5.7 and 5.8). 
The wavenumber k and characteristic impedance zc in the porous medium can be found 
using the porous absorber models given in Chapter 5. By considering Equation 13.5, 
the optimal backing impedance for maximum absorption can be found for a particular 
angle of incidence by setting zf = p0c0/cos(ψ).

Figure 13.18 shows the optimal backing impedance for a particular situation, 
where the porous material is offering a resistance close to p0c0. At low frequency, the 
optimal backing impedance is zero similar to a zero pressure condition, as indicated 
before, but as the frequency increases, the optimal backing impedance also changes. 
It will also change with the porous material’s resistance and the angle of incidence. 
Consequently, minimizing the backing pressure does not necessarily produce optimal 
absorption, although in the case shown it will be fairly effective below 1 kHz. This 
impedance matching approach requires pressure and velocity transducers on the active 
control surface.

Smith et al.22 compared the impedance matching exemplified by Equation 13.5 and 
pressure release control conditions. They found that the impedance matching approach 
was superior, requiring less control effort and achieving higher absorption coefficients. 
Absorption coefficients ranged from 0.8 to 1 from 100 Hz to 1 kHz.

The active controller can also be placed behind a microperforated sheet to gain 
wideband absorption. The principles are similar to that outlined above for more 
conventional resistive material. Cobo and Cuesta23 achieved an absorption coefficient 
of around 0.7 for a frequency range of 200 to 900 Hz from a full-scale system in an 
anechoic chamber measurement.

An alternative approach to hybrid absorption was developed by Guigou and Fuller.24 
They used a smart foam design which integrated a lightweight distributed piezoelectric 
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Figure 13.17 Geometry under consideration when determining optimal backing impedance 
for hybrid active–passive absorption.
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PDVF actuator (the active component) between individual layers of sound absorbing 
foam (the passive component) such that the control can efficiently operate over a broad 
range of frequencies. The foam provides absorption passively at high frequencies, 
and the active element in collaboration with the foam provides absorption at low 
frequencies. In this case, the active surface is being used to reduce the radiated power 
from a vibrating surface.

13.6 Active diffusers

Active devices might offer significant advantages over passive devices. Most importantly, 
they allow diffusion over a wider bandwidth by extending the response of the diffusing 
surfaces to lower frequencies. This is useful because the space available for diffusers 
is usually limited. To achieve good diffusion, a passive diffuser must be significantly 
deep compared to the wavelength of sound, and at low frequencies building space 
costs generally limit the depth of treatments and so performance is compromised. By 
exploiting active technologies, it is possible to extend performance by 2–3 octaves.

Active diffusers also enable surfaces to be designed which are not physically realisable 
using passive technologies, for example surfaces where the well depth is frequency de-
pendent. This enables active designs to perform better than passive diffusers. They do 
not suffer from the critical frequencies that affect many devices made from passive wells.

In the longer term, active diffusers may offer other advantages. Another limitation 
in diffuser design comes from the visual requirements of interior designers.25 A good 
diffuser must be a unified part of the architectural design, rather than an obvious 
add-on. While it is possible to achieve rough surfaces that are pleasing to many, there 
is an appeal in having a flat surface that creates dispersion. Potentially, active surfaces 
could form surfaces that appear to be visually flat and uniform, acting like ‘acoustic 
wallpaper’ – but this has not yet been achieved. A final potential advantage is that active 
devices allow variability. Many rooms have to be multi-purpose, and active elements 
have the potential to enable the acoustics of a space to be easily changed. However, 
the variability can only be achieved electronically over the bandwidth that the active 
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Figure 13.18 Optimal normalized backing impedance for a hybrid active–passive absorber.
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controller is working, which is about 3–4 octaves at low to mid-frequencies.
An example active diffuser is shown in Figure 13.19.26 A Schroeder diffuser profile 

is used with active elements substituting for one or more of the wells. The diffuser uses 
the active elements to produce additional low frequency dispersion by controlling the 
well impedance, for instance simulating a virtual extension to the well.

A Schroeder-style device is appealing because the active element is constrained within 
a pipe, simplifying the modelling and measurement of the termination impedance. 
Only plane wave radiation and propagation need to be considered at the frequencies of 
interest. The disadvantage is that the surface is always going to look like a diffuser. The 
high frequency diffusion is provided by the passive elements in the diffuser, and the 
active elements deal with the low frequencies. There is a complementary relationship 
between the passive and active elements, as there was with hybrid active absorbers, 
which is again exploited.

13.6.1 Controllers

The structures and control regimes described for active absorbers can be adapted to 
make active diffusers. Two control regimes are shown in Figure 13.19. In the second well 
from the left, the simplest control structure is used. A microphone is placed behind a 
piece of thin material of known resistance, and the pressure at the microphone is forced 
to be zero across 3–4 octaves using either a feedback or feedforward configuration. This 
then means the well offers an impedance given by the resistance of the thin material 
alone. This type of structure has been exploited before to make a hybrid absorber with 
a characteristic impedance; here it is being used in a slightly different way to achieve a 
constant resistance less than characteristic. Wire mesh of known resistance is used to 
ensure the desired impedance. In the case of the second well from the left, the desire 
is for a reflection coefficient of 0.39, i.e. partial absorption but with no phase change 
on reflection.

Mineral wool

Metal mesh

Microphone

C ontroller

F rom primary s ource

R =0 0.39 -1 1 1 0.39 0

Wood

Figure 13.19 An active Bessel diffuser where R is the desired reflection coefficient (after 
Cox et al.26).
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The third well from the left shows the other type of control structure. The control 
loudspeaker is instrumented to measure pressure and velocity, and from this the 
surface impedance can be obtained and manipulated to a desired value using the 
techniques described previously for active absorption. In the case shown, the desire 
is for a broadband reflection coefficient of –1, which is equivalent to a well, which is 
a quarter of a wavelength long at every frequency, something that cannot be realized 
from a passive device.

The target surface impedance required for active diffusers is more complex than for 
active absorbers and more difficult to achieve. For instance, when trying to simulate a 
virtual extension to the well, there are singularities in the desired impedance function. 
This problem can be solved by including a small real part to the virtually simulated 
impedance or band, limiting the frequency range over which filter represents the 
desired impedance accurately. Furthermore, in comparison to active absorbers, active 
diffusers have a smaller region of stable control and are more sensitive to control 
impedance errors.27 Target control impedances for a non-absorbing active diffuser must 
be achieved to a much higher level of accuracy than is the case for active absorption, 
because control impedance errors produce much larger changes in the performance of 
an active diffuser than an active absorber. This partly explains why active diffusers are 
so much more difficult to produce than active absorbers. It is also worth noting that 
processes developed to reduce the computational burden for active absorbers are not 
directly applicable to active diffusers, because it is not possible to trade off the final 
error achieved against the computation burden of the adaptation, as active diffusers 
are more sensitive to control impedance errors.

Despite these problems, a variety of diffusers can be made using these technologies, 
as detailed in the following sections.

13.6.2 Improving passive devices

One possibility is to use active wells to take the place of the longest wells in a quadratic 
residue diffuser.28 The active wells are used to create virtual well extensions, and hence 
enable the construction of a shallower active diffuser which creates the same dispersion 
as a passive equivalent with longer wells.

Another possibility is to make a hybrid absorber–diffuser using a unipolar MLS. 
These diffusers cause dispersion by having some of the surface hard and reflective, 
and other parts absorbent. For the passive version of these devices, the low frequency 
bandwidth is limited by the depth of mineral wool that can be used. By using an active 
controller behind the mineral wool, and minimizing the pressure just behind the mineral 
wool, it is possible to extend the bandwidth of these hybrid diffusers by 2–3 octaves.26 
Furthermore, this is an active diffuser that can be operated in feedback mode.

13.6.3 Beyond passive devices

The performance of the unipolar MLS diffuser is limited because it only achieves 
reflection coefficients of 0 and 1. This means that, at best, all it can do is attenuate 
the specular reflection by absorption, it cannot use destructive interference to remove 
it. Consequently, a device with 50 per cent open area can only attenuate the specular 
reflection by 6 dB. By forming a device with reflection coefficients of –1 and 1, a 
bipolar MLS diffuser produces better scattering. While it is possible to form a passive 
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form of this diffuser, it can only operate at discrete frequencies, and the passive form 
also has a series of critical frequencies where it reflects like a planar surface. This is 
shown by the measurements in Figure 13.20. At 500 Hz the passive MLS diffuser 
produces scattering because the reflection coefficient is –1; at an octave higher, however, 
at 1 kHz, the passive surface behaves similar to the plane surface because all the 
reflection coefficients are 1.

An active bipolar MLS diffuser26 can produce a reflection coefficient of –1 from 
about 100 Hz to 1.1 kHz, and overcome this problem, as shown in Figure 13.20. Good 
dispersion is achieved within this bandwidth, but the performance needs to be improved 
at higher frequencies. Due to intercell cancellation, energy is ‘lost’ into the reactive 
sound field, resulting in apparent absorption. For this reason there will be applications 
for which this type of diffuser would not be ideal, for example in large concert halls 
for classical music where the preservation of acoustic energy is a paramount concern. 
In other spaces, such as studios, the loss of energy would not be so important.

Bessel functions29 are used with loudspeaker arrays to enable the radiation from the 
array to be more uniform. As the mathematics behind Schroeder diffusers has much in 
common with transducer arrays, Bessel array technologies can be adapted for diffusers. 
With passive Bessel diffusers it is only possible to construct a passive surface which 
works at a single frequency. Using active technologies, however, it is possible to gain 
a Bessel diffuser that operates over about 3–4 octaves.26 The Bessel diffusers produce 
good dispersion, as illustrated by Figure 13.21, although with rather high absorption. 
Again, intercell cancellation is likely to be the cause of the problem.

A variety of problems with the Bessel diffusers need to be overcome. First the 
absorption needs reducing. Second, a modulation scheme which is more effective is 
needed. Unlike most sequences used for diffuser design and derived from number 
theory, the Bessel coefficients are not meant to be used in a periodic manner. And third, 
the scattering becomes poor at high frequency when the wavelength becomes small 
compared to the well width, and additionally the active controllers cease to generate the 
correct reflection coefficients at the well entrances. Some form of fractal construction 
might help overcome the well width problem, but methods for developing a fractal 
Bessel diffuser are not obvious.
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Figure 13.20 Measured scattering from three surfaces at two different frequencies.
  plane surface;
  active MLS diffuser; and
  passive MLS diffuser (after Cox et al.26).
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13.7 Summary

This chapter has discussed the use of active elements to achieve improved absorption 
or greater dispersion. The main advantage of active control is that it overcomes the 
requirement for large passive surfaces at low frequencies where sound wavelengths are 
long. Unfortunately, the cost and practical difficulties associated with this technology 
have meant that its use is not widespread. Some believe, however, that active systems 
are the future of low frequency absorber and diffuser technology.
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Appendix A
A.1 Table of absorption coefficients

Frequency (Hz)

Material 125 250 500 1000 2000 4000

Curtains or drapes
Light velour 0.338 kg/m2 hung straight in 
contact with wall1

0.04 0.05 0.11 0.18 0.30 0.35

Medium velour 0.475 kg/m2, hung straight1 0.05 0.07 0.13 0.22 0.32 0.35
Medium velour 0.475 kg/m2, draped to half 
area1

0.07 0.31 0.49 0.75 0.70 0.60

Heavy velour, 0.61 kg/m2 hung straight1 0.05 0.12 0.35 0.48 0.38 0.36
Heavy velour, 0.61 kg/m2 draped to half area1 0.14 0.35 0.55 0.77 0.70 0.60

Variation with draping
Hung straight2 0.04 0.16 0.19 0.17 0.20 0.25
Draped to half area2 0.15 0.25 0.30 0.28 0.35 0.40
Draped to 40% of area2 0.19 0.31 0.35 0.34 0.44 0.50
Curtains in folds against wall3 0.05 0.15 0.35 0.40 0.50 0.50

Cotton curtains, 0.475 kg/m2 
Draped to 7/8 area4,5 0.03 0.12 0.15 0.27 0.37 0.42
Draped to 3/4 area4,5 0.04 0.23 0.40 0.57 0.53 0.40
Draped to 1/2 area4,5 0.07 0.37 0.49 0.81 0.65 0.54

Carpet
Carpet heavy, on concrete2 0.02 0.06 0.14 0.37 0.60 0.65
Heavy carpet (same as line above) on foam 
rubber or 1.35 kg/m2 hair felt2

0.08 0.24 0.57 0.69 0.71 0.73

Heavy carpet (same as 2 lines above) with latex 
backing on foam rubber or 1.35 kg/m2 hair felt2

0.08 0.27 0.39 0.34 0.48 0.63

Haircord on felt6 0.10 0.15 0.25 0.30 0.30 0.30
Pile and thick felt6 0.07 0.25 0.50 0.50 0.60 0.65
No underlay (pad), woven wool loop, 1.2 kg/m2 
2.4 mm pile height2

0.10 0.16 0.11 0.30 0.50 0.47

No underlay (pad), woven wool loop, 1.4 kg/m2 
6.4 mm pile height2

0.15 0.17 0.12 0.32 0.52 0.57

No underlay (pad) woven wool loop, 2.3 kg/m2 
9.5 mm pile height2

0.17 0.18 0.21 0.50 0.63 0.83

Loop pile tufted carpet, 1.4 kg/m2, hair underlay 
1.4 kg/m2 2

0.03 0.25 0.55 0.70 0.62 0.84

Loop pile tufted carpet, 1.4 kg/m2, hair underlay 
3.0 kg/m2 2

0.10 0.40 0.62 0.70 0.63 0.88

Loop pile tufted carpet, 1.4 kg/m2, Hair and jute 
underlay 3 kg/m2 2

0.20 0.50 0.68 0.72 0.65 0.90

Loop pile tufted carpet, 1.4 kg/m2, no underlay2 0.04 0.08 0.17 0.33 0.59 0.75
Loop pile tufted carpet, 0.7 kg/m2, 1.4 kg/m2 
hair underlay pad2

0.10 0.19 0.35 0.79 0.69 0.79

16 mm wool pile with underlay1 0.20 0.25 0.35 0.40 0.50 0.75
9.5 mm wool pile no underlay on concrete1 0.09 0.08 0.21 0.26 0.27 0.37
Cord carpet3 0.05 0.05 0.10 0.20 0.45 0.65
Thin (6 mm) carpet on underlay7 0.03 0.09 0.20 0.54 0.70 0.72

(continued)
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A.1 Table of absorption coefficients (continued)

Frequency (Hz)

Material 125 250 500 1000 2000 4000

6 mm pile carpet bonded to closed-cell foam 
underlay7

0.03 0.09 0.25 0.31 0.33 0.44

Thick (9 mm) carpet on underlay2 0.08 0.08 0.30 0.60 0.75 0.80
Needle felt 5 mm stuck to concrete8,9 0.01 0.02 0.05 0.15 0.30 0.40
Thin carpet cemented to concrete11 0.02 0.04 0.08 0.2 0.35 0.4

Other floors
Wood block/lino/rubber flooring6 0.02 0.04 0.05 0.05 0.1 0.05
Parquet fixed with asphalt, on concrete1 0.04 0.04 0.07 0.06 0.06 0.07
Wood on solid floor1 0.04 0.04 0.03 0.03 0.03 0.02
Floors, wood2 0.15 0.11 0.10 0.07 0.06 0.07
Wood platform, large airspace below1 0.40 0.30 0.20 0.17 0.15 0.10
Floor boards on joist floor6 0.15 0.20 0.10 0.10 0.10 0.10
Floors, concrete or terrazzo2,10 0.01 0.01 0.015 0.02 0.02 0.02
Concrete floor11 0.01 0.02 0.02 0.02 0.02 0.02
Linoleum or vinyl stuck to concrete12,9 0.02 0.02 0.03 0.04 0.04 0.05
Linoleum, asphalt tile or cork tile on 
concrete2,5,13

0.02 0.03 0.03 0.03 0.03 0.02

Layer of rubber, cork, linoleum and underlay or 
vinyl and underlay, stuck to concrete18,9

0.02 0.02 0.04 0.05 0.05 0.10

Cork, lino or rubber tile on solid floor1 0.04 0.03 0.04 0.04 0.03 0.02
25 mm cork on solid backing 0.05 0.1 0.2 0.55 0.6 0.55
Slate1 0.01 0.01 0.01 0.02 0.02 0.02

Theatre seating, unoccupied
Beranek’s values14 0.19 0.37 0.56 0.67 0.61 0.59
Average of 9 modern seating designs, 0.9 m row 
spacing15

0.34 0.46 0.64 0.71 0.77 0.85

One seat type, 0.8 m row spacing15 0.29 0.39 0.61 0.74 0.83 0.88
Same seat as line above, 0.9 m row spacing15 0.25 0.35 0.58 0.70 0.78 0.84
Same seat as 2 lines above, 1 m row spacing15 0.23 0.34 0.52 0.65 0.73 0.75
Upholstered seating6 0.45 0.60 0.73 0.80 0.75 0.64
Upholstered seating, well upholstered16 0.44 0.60 0.77 0.89 0.82 0.70
Upholstered seating, leather covered16 0.40 0.50 0.58 0.61 0.58 0.50
 
Seating, occupied
Occupied theatre seating average from refs 1 
and 15

0.41 0.58 0.80 0.90 0.92 0.89

Audience on timber seats (1/m2) 2 0.16 0.24 0.56 0.69 0.81 0.78
Audience on timber seats (2/m2) 2 0.24 0.4 0.78 0.98 0.96 0.87
Orchestra with instruments (1.5 m2/person) 2 0.27 0.53 0.67 0.93 0.87 0.8
Wooden pews (100% occupancy)16 0.57 0.61 0.75 0.86 0.91 0.86
Wooden chairs (100% occupancy)16 0.60 0.74 0.88 0.96 0.93 0.85
Wooden pews (75% occupancy)16 0.46 0.56 0.65 0.75 0.72 0.65

Miscellaneous
Water surface in swimming pool17 0.01 0.01 0.01 0.01 0.02 0.02
Water surface in swimming pool2 0.008 0.008 0.013 0.015 0.02 0.025
Marble or glazed tile2 0.01 0.01 0.01 0.01 0.02 0.02
Solid wooden door18,9 0.14 0.10 0.06 0.08 0.10 0.10
Ventilation grille8,9 0.60 0.60 0.60 0.60 0.60 0.60
Egg boxes19 0.01 0.07 0.43 0.62 0.51 0.70

(continued)
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A.1 Table of absorption coefficients (continued)

Frequency (Hz)

Material 125 250 500 1000 2000 4000

Wood
Plywood panelling, 1 cm thick2,10 0.28 0.22 0.17 0.09 0.1 0.11
22 mm chipboard, 50 mm cavity filled with 
mineral wool18,9

0.12 0.04 0.06 0.05 0.05 0.05

3-4 mm plywood sheets, >75 mm cavity with 
25–50 mm mineral wool8,9

0.50 0.30 0.10 0.05 0.05 0.05

Plywood/hardwood, air space6 0.32 0.43 0.12 0.07 0.07 0.11
6 mm wood fibreboard on laths, cavity>100 mm 
deep18,9

0.30 0.20 0.20 0.10 0.05 0.05

Fibreboard, solid backing6 0.05 0.1 0.15 0.25 0.3 0.3
Fibreboard, 25 mm air space6 0.3 0.3 0.3 0.3 0.3 0.3
9.5–12.7 mm wood panelling, 5–10 cm air 
space behind1

0.30 0.25 0.20 0.17 0.15 0.10

Wood, 50 mm thick 0.01 0.05 0.05 0.04 0.04 0.04

Concrete
Rough concrete20 0.02 0.03 0.03 0.03 0.04 0.07
Smooth unpainted concrete18,9 0.01 0.01 0.02 0.02 0.02 0.05
Smooth concrete, painted or glazed18,9 0.01 0.01 0.01 0.02 0.02 0.02
Concrete block, coarse2 0.36 0.44 0.31 0.29 0.39 0.25
Concrete block, painted2,5,13 0.10 0.05 0.06 0.07 0.09 0.08
Porous concrete blocks without surface finish, 
400-800 kg/m3 9

0.05 0.05 0.05 0.08 0.14 0.20

Clinker concrete, no surface finish, 800 kg/m3 8,9 0.10 0.20 0.40 0.60 0.50 0.60

Bricks and blocks
Brick, unglazed2 0.03 0.03 0.03 0.04 0.05 0.07
Brickwork, plain painted6 0.05 0.04 0.02 0.04 0.05 0.05
Smooth brickwork with flush pointing, 
painted17

0.01 0.01 0.02 0.02 0.02 0.02

Brick, unglazed, painted2 0.01 0.01 0.02 0.02 0.02 0.03
Smooth brickwork with flush pointing18,9 0.02 0.03 0.03 0.04 0.05 0.07
Smooth brickwork, 10 mm deep pointing, pit 
sand mortar8,9

0.08 0.09 0.12 0.16 0.22 0.24

Breeze block6 0.2 0.3 0.6 0.6 0.5 0.5

Plaster
Lime cement plaster18 0.02 0.02 0.03 0.04 0.05 0.05
Glaze plaster18,9 0.01 0.01 0.01 0.02 0.02 0.02
Painted plaster surface8,9 0.02 0.02 0.02 0.02 0.02 0.02
Plaster with wallpaper on backing paper18,9 0.02 0.03 0.04 0.05 0.07 0.08
Plaster, gypsum, or lime, rough finish on lath21,10 0.02 0.03 0.04 0.05 0.04 0.03
Plaster, gypsum, or lime, smooth finish on lath2 0.14 0.1 0.06 0.04 0.04 0.03
Plaster, gypsum or lime, smooth finish on 
lath21,10

0.02 0.02 0.03 0.04 0.04 0.03

Plaster, on laths/studs, air space6 0.3 0.1 0.1 0.05 0.04 0.05
Plaster, gypsum, or lime, smooth finish on tile 
or brick2

0.013 0.015 0.02 0.03 0.04 0.05

Plaster, lime of gypsum on solid backing6 0.03 0.03 0.02 0.03 0.04 0.05
Acoustics plaster6 0.30 0.35 0.5 0.7 0.7 0.7

(continued)
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A.1 Table of absorption coefficients (continued)

Frequency (Hz)

Material 125 250 500 1000 2000 4000

Acoustics plaster, 40 mm thick22 0.31 0.55 0.84 0.78 0.71 0.54
Acoustics plaster, 68 mm thick22 0.47 0.74 0.76 0.65 0.62 0.49

Plasterboard
Gypsum board, 1.27 cm nailed to studs with 
4.1 m c-t-c2

0.29 0.1 0.05 0.04 0.07 0.09

Plasterboard on frame, 9.5 mm boards, 10 cm 
empty cavity23,9

0.11 0.13 0.05 0.03 0.02 0.03

Plasterboard on frame, 9.5 mm boards, 10 cm 
cavity filled with mineral wool23,9

0.28 0.14 0.09 0.06 0.05 0.05

Plasterboard on frame, 13 mm boards, 10 cm 
empty cavity23,9

0.08 0.11 0.05 0.03 0.02 0.03

Plasterboard on frame, 13 mm boards, 10 cm 
cavity filled with mineral wool23,9

0.30 0.12 0.08 0.06 0.06 0.05

2×13 mm plasterboard on steel frame, 5 cm 
mineral wool in cavity, surface painted12,9

0.15 0.10 0.06 0.04 0.04 0.05

Glazing
Glass, ordinary window glass2,10 0.35 0.25 0.18 0.12 0.07 0.04
Single pane of glass, 3–4 mm6 0.2 0.15 0.1 0.07 0.05 0.05
Single pane of glass, >4 mm6 0.1 0.07 0.04 0.03 0.02 0.02
Single pane of glass, 3 mm23,9 0.08 0.04 0.03 0.03 0.02 0.02
Double glazing, 2–3 mm glass, 1 cm gap8,9 0.10 0.07 0.05 0.03 0.02 0.02
Double glazing, 2–3 mm glass, >3 cm gap23,9 0.15 0.05 0.03 0.03 0.02 0.02
Glass, large panes, heavy glass2,5,13 0.18 0.06 0.04 0.03 0.02 0.02

Wools and foam
25 mm fibreglass, rigid backing24 0.08 0.25 0.45 0.75 0.75 0.65
2.54 cm fibreglass, 24 to 48 kg/m3 2 0.08 0.25 0.65 0.85 0.8 0.75
2.5 cm fibreglass, 2.5 cm airspace2 0.15 0.55 0.8 0.9 0.85 0.8
5 cm fibreglass, rigid backing24 0.21 0.50 0.75 0.90 0.85 0.80
7.5 cm fibreglass, rigid backing24 0.35 0.65 0.80 0.90 0.85 0.80
10 cm fibreglass, rigid backing24 0.45 0.90 0.95 1.00 0.95 0.85
5 cm mineral wool (40 kg/m3), glued to wall, 
untreated surface8,9

0.15 0.70 0.60 0.60 0.85 0.90

5 cm mineral wool (40 kg/m3), glued to wall, 
surface sprayed with thin plastic solution8,9

0.15 0.70 0.60 0.60 0.75 0.75

5 cm mineral wool (70 kg/m3) 30 cm in front of 
wall8,9

0.70 0.45 0.65 0.60 0.75 0.65

5 cm wood-wool set in mortar8,9 0.08 0.17 0.35 0.45 0.65 0.65
5.1 cm fibreglass, panels with plastic sheet 
wrapping and perforated metal facing2

0.33 0.79 0.99 0.91 0.76 0.64

5.1 cm fibreglass, 24–48 kg/m3 2 0.17 0.55 0.8 0.9 0.85 0.8
Acoustic tile, 1.27 cm thick5 0.07 0.21 0.66 0.75 0.62 0.49
Acoustic tile, 1.9 cm thick5 0.09 0.28 0.78 0.84 0.73 0.64
Polyurethane foam, 2.5 cm thick 0.16 0.25 0.45 0.84 0.97 0.87
Thermafleece, sheep wool absorbent 100 mm 
thick25

0.47 0.86 1.00 0.94 0.96 1.02

(continued)
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A.1 Table of absorption coefficients (continued)

Frequency (Hz)

Material 125 250 500 1000 2000 4000

Ballast
Ballast or other crushed stone, 3.18 cm, 15.2 cm 
deep2 

0.19 0.23 0.43 0.37 0.58 0.62

Ballast or other crushed stone, 3.18 cm, 30.5 cm 
deep2

0.27 0.58 0.48 0.54 0.73 0.63

Ballast or other crushed stone, 3.18 cm, 45.7 cm 
deep2

0.41 0.53 0.64 0.84 0.91 0.63

Ballast or other crushed stone, 0.64 cm 15.2 cm 
deep2,10

0.22 0.64 0.7 0.79 0.88 0.72

Microperforated absorber
4 cm cavity22 0.08 0.27 0.70 0.35 0.11 0.04
40 cm cavity22 0.64 0.56 0.41 0.28 0.13 0.06

Diffusers
Hybrid absorber-diffuser (BADTM panel 
mounted on 2.5 cm fibreglass)22

0.17 0.40 0.86 1.00 0.84 0.61

2D N=7 QRDTM, design freq. = 500 Hz22 0.14 0.12 0.14 0.20 0.09 0.12
2D N=7 QRD as line above, with cloth 
covering22

0.16 0.17 0.28 0.41 0.26 0.3

1D N=7 QRD, design freq. = 500 Hz22 0.11 0.1 0.07 0.08 0.06 0.06
1D N=7 QRD as line above, with cloth 
covering22

0.13 0.14 0.2 0.24 0.20 0.23
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MATLAB scripts

B.1 Chapter 5: script_5_1

%Absorption of a rigid backed porous absorber
%Using Delany and Bazley formulations
%Normal incidence absorption coefficients

close all
clear all

c = 340;  %speed of sound
rho = 1.21;  %density of air
Z0 = c*rho;  %characteristic impedance of air

sigma = 50000;  %flow resistivity
l = 0.0254;  %thickness

f = [100:50:10000];  %Frequency
nf = length(f);

%Delany and Bazley
X = rho*f/sigma; %dimensionless quantity for Delany and Bazley
zc = rho*c*(1+0.0571*(X.^-0.754)-j*0.087*(X.^-0.732));  
   %characteristic impedance
k = (2*pi/c).*f.*(1+0.0978*(X.^-0.700)-j*0.189*(X.^-0.595)); 
   %complex wave number

gamma = j*k;  %propagation constant
z = zc.*coth(gamma*l) %surface impedance

figure
semilogx(f,real(z),'b',f,imag(z),'g');
title('Impedance of rigid backed porous absorber')
xlabel('Frequency(Hz)')
ylabel('Impedance')
legend('Real','Imaginary')

R = (z-Z0)./(z+Z0); %reflection factor

figure
semilogx(f,abs(R),'b',f,angle(R),'g');
title('Reflection factor of rigid backed porous absorber')
xlabel('Frequency(Hz)')
ylabel('Reflection factor')
legend('Magnitude','Phase')

anormal = 1-abs(R).^2; %absorption coefficient
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figure
semilogx(f,anormal);
title('Normal incidence abs. coeff. of rigid backed porous absorber')
xlabel('Frequency(Hz)')
ylabel('alpha')

B.2 Chapter 5: script_5_2

%Absorption of a rigid backed porous absorber
%Using Delany and Bazley formulations
%Normal incidence absorption coefficients

%Demonstrating effects of thickness

close all
clear all

c = 340;  %speed of sound
rho = 1.21;  %density of air
Z0 = c*rho;  %characteristic impedance of air

sigma = 20000; %flow resisivity

f = [100:50:10000]; %Frequency
nf = length(f);

%Delany and Bazley
   %dimensionless quantity for Delany and Bazley
X = rho*f/sigma;
   %characteristic impedance
zc = rho*c*(1+0.0571*(X.^-0.754)-j*0.087*(X.^-0.732));
   %complex wave number
k = (2*pi/c).*f.*(1+0.0978*(X.^-0.700)-j*0.189*(X.^-0.595));

figure(1)
hold on
for il = 1:4    %thickness loop
 l = (il-0.5)*0.0254;  %thickness

 z = -j*zc.*cot(k*l)  %surface impedance
 R = (z-Z0)./(z+Z0);  %reflection factor
 anormal = 1-abs(R).^2;  %absorption coefficient
 str = dec2bin(il,3)
 semilogx(f,anormal,'color',[str2num(str(1)) str2num(str(2)) ... 
 str2num(str(3))]);
 title('Abs. coeff., rigid backed porous absorber')
 xlabel('Frequency(Hz)')
 ylabel('alpha')
 strlegend(il,1:6) = char(num2str(l,4));
end
legend(strlegend)
axis([100,10000,0,1])
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B.3 Chapter 5: script_5_3

%Absorption of a rigid backed porous absorber
%Using Delany and Bazley formulations
%Normal incidence absorption coefficients

close all
clear all

c = 340; %speed of sound
rho = 1.21; %density of air
z0 = c*rho; %characteristic impedance of air

%Frequency
f = [100:50:10000]; 
nf = length(f);

%Consider absorbent layer alone

%Delany and Bazley
sigma = 20000;  %flow resisivity
X = rho*f/sigma; %dimensionless quantity for Delany and Bazley
zc = rho*c*(1+0.0571*(X.^-0.754)-j*0.087*(X.^-0.732));
   %characteristic impedance
k = (2*pi/c).*f.*(1+0.0978*(X.^-0.700)-j*0.189*(X.^-0.595));
   %complex wave number
l = 0.0254;  %thickness
z = -j*zc.*cot(k*l) %surface impedance

figure(1)
semilogx(f,real(z),'b',f,imag(z),'g');
title('Effect of air gap')
xlabel('Frequency(Hz)')
ylabel('Impedance')
legend('Real','Imaginary')

R = (z-z0)./(z+z0); %reflection factor

anormal = 1-abs(R).^2; %absorption coefficient

figure(2)
semilogx(f,anormal);
title('Effect of air gap')
xlabel('Frequency(Hz)')
ylabel('alpha')

%Consider absorbent with air layer behind
l = l/2;   %Depth of air layer
kair = 2*pi*f/c;
zs1 = -j*z0*cot(kair*l); %Impedance at top of air layer
zs2 = (-j*zs1.*zc.*coth(k*l)+zc.^2)./(zs1+zc.*coth(gamma*l));
    %Impedance at surface of absorber

figure(1)
hold on
semilogx(f,real(zs2),'c',f,imag(zs2),'m');
title('Effect of air gap')
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xlabel('Frequency(Hz)')
ylabel('Impedance')
legend('Real 25 mm','Imaginary 25 mm', ...
'Real 12.5 mm air gap','Imaginary 12.5 mm air gap')

R = (zs2-z0)./(zs2+z0); %reflection factor
anormal = 1-abs(R).^2;  %absorption coefficient

figure(2)
hold on
semilogx(f,anormal,'r');
title('Effect of air gap')
xlabel('Frequency(Hz)')
ylabel('alpha')
legend('25 mm absorbent','12.5 mm absorbent and air gap')

B.4 Chapter 6: script_6_1.m

%Absorption of a perforated absorber
%Normal incidence

close all
clear all

c = 340; %speed of sound
rho = 1.21; %density of air
Z0 = c*rho; 
viscosity = 15e-6; %kinemetric viscosity of air

sigma = 20000; %Flow resistivity of mineral wool
l1 = 0.025;  %backing thickness air
l2 = 0.025;  %backing thickness porous absorber

f = [100:50:2500];  %Frequency
nf = length(f);

kair = 2*pi*f/c;
w = 2*pi*f;

%Impedance at top of air layer
z1 = -j*Z0.*cot(kair*l1); 

%calculate impedance of porous material (Delany and Bazley)
%dimensionless quantity for Delany and Bazley
X = rho*f/sigma;
%characteristic impedance
Zc = rho*c*(1+0.0571*(X.^-0.754)-j*0.087*(X.^-0.732));
   %wavenumber
k = (2*pi/c).*f.*(1+0.0978*(X.^-0.700)-j*0.189*(X.^-0.595));

%Impedance at top of porous absorbent
z2 = (-j*z1.*Zc.*cot(k*l2)+Zc.^2 )./ (z1 -j*Zc.*cot(k*l2));

%Loop over different open areas
eta = [0.0625,0.125,0.25,0.50,1.00]
ne = length(eta);
for m = 1:ne
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 a = 2.5e-3;   %hole radius
 D = sqrt(pi/eta(m))*a;  %Hole spacing
 delta = 1.6*(1-1.47*eta(m)^0.5+0.47*eta(m)^3/2);
     %end correction
 t = 6.3e-3;   %plate thickness
 rm = (rho/eta(m))*sqrt(8*viscosity*w)*(1+t/(2*a));
     %surface resistance

 z3 = (j/eta(m))*(2*delta*a+t)*w*rho+z2+rm;
     %impedance of resonant absorber
 R = (z3-rho*c)./(z3+rho*c); %reflection factor
 alpha = 1-abs(R).^2;  %absorption coefficient

 figure(1)
 hold on
 str = dec2bin(m,3)
 plot(f,real(z3),'color', ...
[str2num(str(1)) str2num(str(2)) str2num(str(3))] ... ,'LineStyle','-');
 plot(f,imag(z3),'color', ...
[str2num(str(1)) str2num(str(2)) str2num(str(3))] ... ,'LineStyle',':');
   
 figure(2)
 hold on
 plot(f,alpha,'color', ...
[str2num(str(1)) str2num(str(2)) str2num(str(3))]);
end

B.5 Chapter 6: script_6_2.m

%Absorption of a slotted absorber
%Normal incidence

close all
clear all

c = 340; %speed of sound
rho = 1.21; %density of air

r0 = 32; %air flow resistance of porous material = 
  %flow resistivity*thickness

l = 0.1;  %backing thickness

f = [100:10:1100];  %Frequency
nf = length(f); %Number of frequency terms
k = 2*pi*f/c; %wavenumber
w = 2*pi*f;  %Angular frequency

z1 = rho*c*coth(j*k*l); %Impedance at top of air cavity

t = 15e-3;   %Plate thickness
d = 0.01;   %slot width
eta = (0.0465*4*d)/(pi*0.05^2); %open area
delta = -(d/pi)*log(sin(pi*eta/2)); %end correction
%impedance of resonant absorber
z2 = (j/eta)*(2*delta+t)*w*rho+z1+r0/eta;
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figure   %Plot impedance
plot(f,real(z2),'b',f,imag(z2),'g');
title('Impedance')
xlabel('Frequency(Hz)')
ylabel('Impedance')
legend('Real','Imaginary')

R = (z2-rho*c)./(z2+rho*c);  %reflection factor
anormal = 1-abs(R).^2;  %absorption coefficient

figure    %Plot absorption coefficient
plot(f,anormal);
title('Normal incidence absorption coefficient')
xlabel('Frequency(Hz)')
ylabel('alpha')

B.6 Chapter 6: script_6_3

%Microperforated
%Helmholtz absorber

close all
clear all

D = 2.5e-3;  %Hole separation
d = 0.2e-3;  %Hole diameter
a = d/2;  %Hole radius
t = 0.2e-3;  %Sheet thickness
l = 0.06;  %Cavity depth

f = linspace(50,8000,100);
nf = length(f);
w = 2*pi*f;
c = 340;
k = w/c;
rho = 1.21;
viscosity = 1.85e-5;
eta = pi*a^2/(D^2); %Open area

z1 = -j*rho*c*cot(k*l); %Impedance, top of cavity;

%Impedance of covering sheet
kd = a*sqrt(rho*w/viscosity);
s = kd*sqrt(-j);
z2 = j*w*rho*t./(1 - 2*besselj(1,s)./(s.*besselj(0,s)));
z2 = z2/eta +j*w*0.85*2*rho*a/eta+sqrt(2)*kd*viscosity/(2*a*eta);
z = z1+z2;

R = (z-rho*c)./(z+rho*c);  %reflection factor
anormal = 1-abs(R).^2;  %absorption coefficient

hold on
plot(f,anormal,'g')
xlabel('f (Hz)')
ylabel('abs. coeff')
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B.7 Chapter 13: simple_lms.m

%LMS demo

close all
clear all

N = 10000;   %Number of time iterations
k = [1:N];   %This is inefficient for storage, but allows
    %graphs to be plotted

s = sin(2*pi*k*10/N)'; %Input signal
figure
plot(k,s)
title('Input signal s')
xlabel('Time k')
ylabel('(linear)')

x = (rand(N,1)-0.5)*2; %Noise signal
figure
plot(k,x)
title('Noise signal x')
xlabel('Time k')
ylabel('(linear)')

W_1 = ([0.5,0.2]); %This is W^-1 in Figure 13.2

W = rand(1,2); %starting adaptive filter weights (assigned randomly)
alpha = 0.001; %Update rate

e = zeros(N,1);
Wstore = zeros(N,2);
n(1,1) = 0;
for j = 2:N
 n(j,1) = W_1*x(j-1:j); %This is convolution in matrix format
 %Note that W_1(2) is actually the first coefficient
 %and W_1(1) is actually the second coefficient
 d = s(j)+n(j);
 y = W*x(j-1:j); %Output from adaptive filter
 e(j-1) = d - y; %Error

 W = W + 2*alpha*e(j-1)*rot90(x(j-1:j),1); %Update weights
 Wstore(j-1,:) = W; %Store weights for future plotting
end

figure
plot(e)
title('Error')
xlabel('Time k')
ylabel('(linear)')

figure
plot(Wstore(:,1))
hold on
plot(Wstore(:,2),'r')
title('Adaptive filter coefficients')
xlabel('Time k')
ylabel('(linear)')
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1D diffusers 47, 113, 290, 316
see also Schroeder diffusers, single 

plane 
2D diffusers 290, 316

absorbing materials:
applications 7–29
basic principles 7–29
characteristics 2
measurement of 70–107 (see also 

flow resistivity; impedance tube 
measurement; in situ measurement; 
multi-microphone measurement; 
porosity; reverberation chamber; 
standing wave tube method; tortuosity; 
transfer function measurement of 
absorbers; transmission measurements; 
two microphone measurement; 
pore shape factor and characteristic 
dimensions, wavenumber)

measurement of internal properties 
95–107

see also active absorbers; bass traps or 
bins; carpet, absorption from; curtains; 
foam; ground; Helmholtz absorber; 
hybrid absorber-diffusers; membrane 
absorber; microperforated absorber; 
mineral wool; profiled absorber; 
plaster, acoustic; porous absorber/
absorption; resonant absorbers; 
rubber; seating and audience;

absorbers and diffusers 1, 31, 42–4
active 419–38
comparison of 4–5, 236
in rooms and geometric models 399–417 

absorption coefficient 1, 11–14
active absorber 425–6, 432–3
average 11
definition 11, 19, 21
different angles of incidence 158
edge diffraction 403, 406–7
from free field to random incidence 

399–403

from reverberation chamber to real 
rooms 403–4

FDTD 280
finite and infinite samples 400–2
greater than one 201, 403, 406–7
hybrid absorber-diffusers 373, 382–3, 

389–90
in geometric room acoustic models 12, 

404–8, 413–14
in scattering coefficient measurement 

136–8, 148
in situ measurement 90–4
laboratory to laboratory variation 87
measurement 26, 70–8, 80–90
Millington 405–6
microperforation 224
normal incidence 70–1
non-diffuseness 403
perimeter effect 401
porous absorber 156–7
prediction 162, 182, 184–6, 191, 215
profiled absorber 237, 241, 243
random incidence 11, 70, 84, 399–400, 

405
Schroeder diffusers 233
see also absorption coefficient graphs

absorption coefficient graphs
acoustic plaster 163
activated carbon 168
active absorber 432
bonded flint absorber 167
carpets 165
concrete masonry unit 206, 321
curtains 164
fibreglass 77, 87, 159
fibrous absorber 94
foam 77, 158, 163
Helmholtz absorber 196, 200, 211–13, 

221, 222
hybrid absorber-diffusers 374, 390
membrane absorber 198
metal plate absorber 207
microperforated devices 203, 225–6

Index
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absorption coefficient graphs (continued)
mineral wool 196 
passive electroacoustic absorber 208
porous absorber, predicted 182, 185, 

222
profiled absorber 237, 239, 241
quadratic residue diffusers 234
Rockwool 157
rubber, granulated 77, 162
Schroeder diffusers 201, 320–1
seating 90, 231–2

absorption
and/or diffusion 202, 235–6
versus diffusion reflection 4–5
see also hybrid absorber-diffusers

acceleration schemes 262–4
activated carbon 168
active absorbers 15, 159, 419–34

alternative control regime 428–31 
controllers 422–5
ducts 425
energy dissipation 427
feedforward/feedback 423
frequency range 432
hybrid active-passive 431–4
small room 419, 425–31
three dimensions 425

active control, principles of 420–422
LMS 420–1

active diffusers 49, 434–8
Bessel 435, 437–8
beyond passive devices 436–8
controllers 435–6
improving passive devices 436
MLS 437

active impedance 422–5
transduction errors 425

admittance 255, 259, 261, 266–7, 272, 274, 
284, 296, 323, 326, 402, 423

definition 18–20
wells 240–3

adsorption 168
aerogels 167

AES-4id-2001 see diffusion coefficient
aesthetics 33–4

see also visual aesthetics
air absorption 11–12, 85, 87
ambechoic 48–9
anechoic chamber 9, 189
apparent specular absorption coefficient 

136, 138
asphalt, open porous 26, 172–77, 188
audience

absorption see seating and audience
areas 64–6
canopy 65

auralization 404, 408, 413

autocorrelation 151, 301–2, 304
Barker sequence 305, 308, 310
Chu sequence 302
diffuser array 307–8
diffusion coefficient 130–4
hybrid absorber-diffusers 378–9
MLS 379, 387
modulated sequence 391–3
optical sequence 381–2
optimized sequence 383–4
orthogonal modulation 309
periodic sequence 391
power residue sequence 302
quadratic residue sequence 301–2
ternary sequence 379, 388–9
two-dimensional sequences 386–7, 389

autospectrum 383
MLS 379
ternary sequence 379

BAD panel see hybrid absorber-diffusers, 
planar

band gap 244, 246–8, 368–9
barriers 26–8, 66, 91, 205
bass trap or bin 15, 198–9
beam tracing see geometric room acoustic 

models
BEM see boundary element method
bending

modes 206–7
waves 214, 370

Bessel
function 219, 224, 402–3
diffusers 435, 437–8

Biot theory 191–2
Bloch theorem 246, 262–3
boss models 286
boundary element method (BEM) 252–68, 

284–5
2D versus 3D 258
acceleration schemes 262–4
Burton Miller method 257
CHIEF method 257
compared to measurements 121, 263, 

265–8
external point pressures 258
fast multipole method (FMM) 262
general solution method 255–8
hybrid surfaces, accuracy 267–8
non-absorbing surface 259–61
non-unique solutions 257
periodic surfaces 262–4
planar thin surface 261–2 
profiled absorber 239, 241–2, 244
scattering coefficient 141, 144
Schroeder diffusers, accuracy 266–7
surface pressures 255–8
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symmetry 257–8
thin panel solution 259–62
thin rigid reflectors, accuracy 264–5
time domain 284

boundary layer effect 169, 210, 403
see also viscous layer effect

boundary plane measurement 112, 115
bulk modulus 18, 106, 177–8, 180–1, 183, 

190, 192, 278

canopy design see audience canopy; stage 
canopy

carbon see activated carbon
carpet 13, 17, 156 164–5, 231–2
ceiling tile, acoustic 34, 49, 160
characteristic lengths 26, 95, 177–8, 180,

measurement 105–7
Chinese remainder theorem 317–18, 320, 

386–7
Chu sequence 302–3, 311
clear absorber 198, 202–5, 223
coherence 39–40, 130, 413, 421
coincidence 370–1
coloration 2, 4, 14, 17, 55, 63, 122, 343, 

351
canopies 56–9, 64, 361–4
diffusers 37, 133, 150–2, 304
sound reproduction rooms 40–9
music practice rooms 49–52

comb filtering 37, 39, 40, 43, 46–7, 55, 59, 
151–3, 334, 346, 351, 361, 363

compressibility 18
concave arc 16, 343–4 

polar responses 63, 125, 343
concrete 12, 49, 72, 172, 189

diffusers 34, 63, 369
masonry unit (CMU), diffusive 49–50, 

205–6, 321
convex arc 344–52

see also semicylinders; curved diffusers
corner reflector 341
correlation scattering coefficient 143–47, 

416
concave arc 146
cylinders 144
primitive root diffusers 143 
rotated plane surface 132
Schroeder diffusers 145 

Courant number see finite difference time 
domain

Coustone 166–7, 172
covers, porous absorption 159–60
critical bands 153
curtains 17, 163–4

different material weights 164
fullness of draping 164

curved diffusers 344

application 32–3, 45, 55–6, 63–4
cut-off frequency 346–7
design 353–5
hybrid absorber-diffusers 375–7, 394
optimized 352–60, 362
periodicity and modulation 357–60
polar responses 63, 348, 356, 394
stage canopy 361–4
see also concave arc; convex arc; 

semicylinders
cut-off frequency 9, 189, 198, 267, 299, 

332–4, 346–7, 373
cylinders see semicylinders 

damping 15, 22, 197, 199, 202, 207–8, 235, 
430–1

constrained layer 371
decay of scattered sound 150
Delany and Bazley empirical model 172, 

181–3, 185–6, 188–91
formulations 173–5

density
effective 18, 99, 102, 106, 180–1, 183, 

227, 240
porous absorber 159–61, 164

Diffractal 44, 311–12, 365
diffraction 11, 39–40, 67, 88, 169, 244, 

264, 289, 346, 408, 413–14
grating 349
lobes 125, 285, 290, 292, 294, 296, 

298, 324
see also edge diffraction

diffsorption see hybrid absorber-diffusers
diffuse reflections 1–4, 39–40, 42–3, 47, 50, 

59, 66, 340
geometric room acoustic models 12, 

129–30, 148, 404, 407–16
hybrid absorber-diffusers 17, 375–6, 

378, 393–8
measurement and characterization of 

110–53
other methods for characterizing 

147–53
wavefronts 34–9

diffuse sound field 51–2, 66
diffusers

absorption versus diffuse reflections 
4–5

applications and basic principles of 
31–67

audience 64–6
blurring the focusing from concave 

surfaces 63–4
diffuse field 64–6
early arriving reflections in large spaces 

55–6
echo control 31–3
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diffusers (continued)
materials, construction 34, 321, 352, 

369–71
music practice room 49–52
noise barriers 27, 66-7
orchestra pits 62–3
position of a listener from 46
rear and side stage enclosures 58–62
reverberation chambers 52–3
sound reproduction rooms 40–7
spaciousness in auditoria 54–5
speech intelligibility in underground 

(subway) stations 53–4
stage enclosures 56–63
street canyons 67
stage canopies 56–8
visual aesthetics 33-4, 352, 368, 375
wavefronts from 34–9
see also active diffusers; convex arcs; 

curved diffusers; fractal diffusers; 
geometric reflectors and diffusers; 
hybrid absorber-diffusers; optimized 
diffusers; primitive root diffusers; 
quadratic residue diffusers; Schroeder 
diffusers; semicylinders; triangular 
diffusers; volumetric diffusers

‘diffusor’ 40
diffusion coefficient 40, 117–20, 123–5,

definition 110, 128, 131–2 
diffuser manufacturer and application 

128–9
discussion 133
geometric room acoustic models 129–30
hybrid absorber-diffusers 385, 396 
in situ measurement 147
normalized 120, 131–2
obtaining polar responses 133
optimization 325, 354
principle 130–33
random incidence 133
scattering coefficients and 127–8, 

141–3, 145–7
Schroeder diffusers 293, 303, 308, 310, 

315, 328
spectra 120, 126, 131–2, 145–6
table 134–5
temporal evaluation 150
values tend to be small 134

DiffusorBlox 50, 205
drapes see curtains
duct 425

see also pipes and ducts

early arriving reflections in large spaces 
55–6

early lateral energy fraction (ELEF) 129, 
405, 414–15

earth 169, 176
echo 31–2, 34, 39, 53, 63, 122, 133, 343, 

352
edge diffraction 11, 81–2, 84, 93, 120, 201, 

269, 271, 331–3, 340, 344, 400–1, 403, 
407, 410, 415

models 285
electron microscope view of absorber 163
ellipse 34, 348
end correction 209-10, 213, 217, 224
energy

attenuation coefficient 138
density 14, 52

envelopment see spatial impression
extended reaction 73, 189
Eyring 86, 149, 405–6, 410
Eyring-Norris formulation 12

far field 34, 46, 83, 121–5, 144, 146, 241–2, 
253, 262, 268, 270, 273–7, 281, 283, 
289, 29–6, 299, 304, 322–3, 334–40

fast multipole method (FMM) 262
FDTD see finite difference time domain
felt 165, 178–9, 231–2, 247
Fermant’s principle 335
fibreglass 9, 15, 17, 76, 156, 192, 199, 202, 

204, 402
absorption coefficient 78, 87, 159, 374, 

390
characteristic lengths 178
diffusion coefficient 385
empirical model 173–5
flow resistivity 170–1
in a partition 22
polar response 393
see also mineral wool; porous absorber/

absorption
fibreless absorber 5, 13, 162, 202, 205
fibrous absorbers see porous absorber/

absorption
finite difference time domain (FDTD) 34, 

277–84
anechoic boundary conditions 282–3
Courant number 280
curved surface 35
excitation 281–2
flat surface 35
including objects in the integration area 

280–1
near to far field transformation 

283–4
perfectly matched layer (PML) 282–3
quadratic residue diffusers 36, 277
stability 280
wavefronts 35–6, 38 

finite element analysis (FEA)  199, 210, 214, 
257, 277, 280, 284–5
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fire 161, 369
flat plate frequency 142, 302, 309–10, 317
flat surface 46–7, 61, 133, 136, 143–4, 147, 

264, 271, 274, 299, 335, 352, 362, 366, 
416, 434

decay 150
diffusion coefficient 131–2, 146
polar response 146
see also plane surface

flow resistance 172, 221, 226, 432
definition 169
measurement 96, 98–9
profiled absorbers 234–5, 239
units 170

flow resistivity 25–6, 78, 106, 159, 161, 
167, 169, 172–7, 180, 187–8, 191, 321, 
431–2

definition 169–70
formulations 170–2
ground 176, 249
measurement 95–9, 106–7
profiled absorber 235–6
resonant absorber 212, 217, 219
temperature, effects of 170
units 170

flow through a perforated sheet 216
flutter echo 17, 31, 47, 49
Flutterfree 140, 201
foam 9, 15, 24, 28, 76–7, 104, 156, 158, 

161–3, 165, 170, 172, 175, 206–7, 214, 
433–4

characteristic lengths 178
porosity 172
tortuosity 179
see also porous absorber/absorption

focussing see concave arc
forest 176, 187, 248–9
Fourier 83, 220, 317, 322, 386

decomposition 239, 243, 285
model 141, 145, 244, 253, 295–6, 

394–5
series 353
solution 273–5
synthesis 365–6
theory 336, 377, 390–3
transform 301, 304–5, 378, 387

fractal diffusers 53, 286, 322, 331, 364–8, 
369, 437

Fourier synthesis 365–6
Fractional Brownian Diffusers (FBD) 

366
optimized 357
random addition diffusers (RAD) 368
step function addition 366–8
see also Diffractal

Fraunhofer model 253, 273–7, 346
accuracy 276–7

Schroeder diffusers 295–6, 312–13, 322
frequency response 17, 39, 134, 148, 152, 

281, 284, 306, 339, 369, 424
flat surface and a diffuser 37
music practice room 51–2
plane surface 333-4
semicylinder(s) 346, 351–2
small room 14–15, 43, 46, 48, 198
see also total sound field

Fresnel
model 253, 272–3, 332, 339, 346
zones 123

genetic algorithm 93, 326, 384
geometric reflection point 44, 58, 123, 

331–3, 335, 338–9, 347, 362
geometric reflectors and diffusers 331–71

construction 369–71
see also convex arcs; curved diffusers; 

flat surface; optimized diffusers; 
semicylinders; triangular diffusers;

geometric room acoustics models 65, 90, 
127–8, 285, 403

absorption in 404–7
distributing the diffuse energy 410–3
modelling of scattering 407–17 (diffuse 

energy decays with reverberation time 
of the hall 410; diffuse reflections 
in 407–17; diffusion coefficients see 
scattering coefficients; early sound 
field wave model 410; edge scattering 
410; radiosity and radiant exchange 
410; ray re-direction 409; transition 
order using particle tracing 409)

polar responses 412
scattering coefficients 129–30, 135, 

147, 413–16
geometric scattering theory 346–8
glass beads 172, 178
glass fibre see mineral wool; fibreglass
glass reinforced gypsum (GRG) 290, 321
glazing 202
global minimum 326
goniometer 113, 116, 120, 126, 144
granular absorbents 162, 167–8, 170–2, 

175, 179
grassland 28, 176, 188
grating lobes 128, 242, 244, 294, 297, 

303, 305, 309, 312, 316, 318–19, 337, 
349–50, 352, 357–8, 369, 378, 383

gravel 172, 178
Green’s function 252–3, 257–8, 262–3, 268, 

272–3, 326
ground 3, 28, 169

effect 248–9
flow resistivity 176, 249
measuring 93–4
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ground (continued)
modelling 175, 186–8
ploughed 169

Hankel function 254–6
hearing protection devices 28
Helmholtz absorber 72, 196, 207, 238–9

absorption coefficient graphs 196, 
200–1, 203, 206, 221, 225–6

absorption and diffusion 202
application 15–16, 200–1
clear absorber 202–4
construction 197, 199–201, 223
design equations 208–10, 215–19
double resonators 223
example calculations 221-2
facing thickness, effect of
flow resistivity, effect of 212
hybrid absorber-diffusers 389
impedance graphs 211, 220, 222
lateral orifices 227
losses 215–17
masonry device 205
mechanisms 197
oblique incidence 219–20
open area, effect of 211
shaped holes and slots 223
slotted 212–13, 221
see also microperforated absorber; 

resonant absorber
Helmholtz

equation 253
–Kirchhoff integral equation 253–5, 284
mount 201–2
resonator 209–14, 238–9, 314–15

Hemispherical diffusers 113, 139
Hemispherically, scatter 47, 49, 51, 63, 66, 

344, 378, 416
Huygen’s principle 123

hybrid absorber-diffusers 1, 5, 17, 47, 
160, 269–71, 373–98

absorption coefficient 374, 389–90
active 436
applications 50–1, 374–6
construction 374–6
curved 375–7
boundary element modelling 395–8
diffusion coefficient 385, 396
modulation 391–3
number sequences (MLS 378–80; one-

dimensional 378–85; optical sequence 
381–2; optimized sequence 383–6; 
two-dimensional 386–9)

periodicity 391–3
planar 134, 373–5, 377, 380, 395
polar responses 264, 268, 380, 392, 

393–5, 396–7

Schroeder device 201–2
simplest theory 377–8, 390
wave reflected from 38–9
see also ternary and quadriphase 

diffusers
hybrid active-passive absorber 431–4
hybrid room models see geometric room 

acoustic models

image processing, distortion in 355
image shift 4, 41, 122
image source modelling see geometric room 

acoustic models 
impedance 39, 80–2, 84, 217, 253, 313, 

394, 399
active 420, 422–7, 431–4, 436
boundary condition 280, 282
discontinuity 400
flow, measurement 98–9
matching/mismatch 9, 159, 167, 244, 

369, 371
radiation 210, 224, 247, 267, 315, 427
slot 227
sonic crystal 245
termination 79
tube 224
well 241–2, 435
see also impedance, characteristic; 

impedance, surface; impedance tube 
measurement

impedance, characteristic 26, 95, 105, 177, 
191, 212, 235

definition 18
empirical models 173–5
inverse methods of measurement 100–1
phenomenological models 180–2
porous absorber 181
relaxation model 182–3

impedance, surface 26, 99–100, 192, 268–9, 
271, 373, 378, 407

absorption coefficient, relationship 
18–21

admittance, relationship 18–21
covers, modelling 186
earth 169
FDTD 280, 282
fibrous absorber 94, 192
ground 186–8
in situ measurement 90–4
local reaction 189, 267, 405
microperforated 224
oblique incidence 190–1
predicting 184–6 (multi-layer porous 

absorbers 188–9; single layer porous 
absorber with rigid backing 184–6; 
transfer matrix modelling 22–4)

profiled absorber 234–5, 240–3
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reactance 21, 209, 238
reflection coefficient, relationship 18–21
resistance 21, 182
resonant absorber 208–9, 211–12, 

215–20
impedance tube measurement 70–80, 99, 

100, 106, 127, 225, 400, 402
activated carbon 168
granulated rubber 162
Helmholtz absorber 196, 221–2
least mean square method 77–8
mineral wool 196
porous absorber 222
profiled absorber 239
round robin 76–7
set-ups 71
slotted Helmholtz absorber 221
standing wave method 73–5
transfer function method 75–8
transmission 78–80

impulse response 91, 112, 116–18, 135–7, 
148, 150–2, 252, 277, 284–5, 334, 345, 
404

diffusers 39
room 10, 12, 42, 48-9, 50–1
Schroeder diffusers 37
see also total sound field

index sequences 301
infinite impulse response (IIR) 429–30
insertion loss 247
in situ measurement 13

absorption 90–4
diffuse reflections 147, 152

intelligibility see speech intelligibility
Inverse methods for multiple material 

parameters 106–7

Kath and Kuhl method 88–90 
Kirchhoff

boundary conditions 253, 262, 264, 
268–72, 276, 286, 322, 390–1, 395

polar responses 270–1, 276
model 253, 255, 268–73, 276, 340

Lambert’s cosine law 128, 130, 408–13, 416
lateral reflections 4, 40, 47, 54–5, 66
least mean square method 77–8
live end dead end (LEDE) 40
local reaction 189, 255, 400, 405
loudspeaker cabinets 28
Lüke sequence 302

macroscopic empirical models see Delany 
and Bazley

man made mineral fibres (MMVFs) 160–1
masonry devices or units see concrete
mass 18, 98, 103, 186, 189, 207, 371

acoustic 159, 199, 208–10, 213–16
effect of the holes 160, 218–19, 227, 

241, 313–15, 373, 389
elements 236, 238–9
limp 24, 315
spring 15, 197, 199, 205, 280
thermal 9

maximum length sequence (MLS) 308, 
381–3, 386–7

active diffusers 437
bipolar 379–80, 436–7
diffusers 295–7
hybrid absorber-diffusers 267, 375, 

378–80, 387, 394, 397
measurement 53, 76, 81, 86, 91, 

112–14, 117, 138, 424
polar responses 297, 380, 392, 394, 

397, 437
unipolar 380, 392, 436

measurement of
absorbent materials 70–107
polar responses 111–27
diffuse reflection or scattering 110–53

membrane 159–60, 166, 236, 238, 315
membrane absorber 5, 16, 73, 197, 207

bass trap 198–9, 202
design equations 208–9, 213–17
mechanisms 197
microperforated 225–6
passive electroacoustic absorption 207
see also resonant absorber

metal 24, 71, 161, 206, 435
diffusers 369
foam 178–9
microperforated 205
perforated 24, 34, 201, 375
plate resonators 15, 206–7, 223
sintered 25, 172

microperforated absorber 5, 8, 13, 15, 197, 
215–16, 314, 433

clear 203
construction 202–5
design equations 223-7
wood 204

microslits 8, 202–3, 227
Millington equation 12, 86, 405–6
mineral wool 8, 13, 15, 17, 24, 100, 156, 

160–1, 197, 435–6
absorption coefficient 196
absorptive substrate 165–7
attenuation and density 158–9
characteristic lengths 178
empirical model 173–4
flow resistivity 170–1
in hybrid absorber-diffusers 268, 373–4, 

390, 398
local and extended reaction 189
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mineral wool (continued)
manufacture 160
in a partition 22
porosity 101, 172, 219
risk to health 161
see also fibreglass; porous absorber/

porous absorption
MLS see maximum length sequence
modal 85

active control 427–31
behaviour of rooms 13, 48, 52, 198–9, 

427
control 4, 14, 16, 47, 50–1
density 13, 53 

mode matching prediction of scattering 
285

Modex 198
modulation 202, 294, 342–3, 349–50, 355, 

437
amplitude 152, 353
diffusion coefficient 306
hybrid absorber-diffusers 386–7, 389, 

391–3
optimized curved surfaces 357–60
polar responses 305–6, 392
Schroeder diffusers 303–12

modulo 291
Mommertz and Vorländer method see 

scattering coefficient
multi-microphone measurement of 

impedance and absorption 241–2
free-field 80–1
for non-isotropic, non-planar surfaces 

82–4
for periodic surfaces 82–4

multiple scattering theory 249
music practice room 49–52, 373–4

natural noise control 28, 248–9
Navier-Stokes equation 227
near field 46, 83, 124–5, 144, 262, 276–7, 

322–3, 337–8
acoustic holography 125
definition 275
and far field 121–5
to far field transformation 283
see also far field

noise 1, 9, 24, 70, 76, 82, 84, 86–7, 94, 156, 
169, 188, 423

active control 15, 419
control 1, 3-4, 26, 71, 204–5, 230, 247, 

248–9 (in factories 13–14)
exposure 28
signal 420–2
in streets 67

non-diffuse sound field 13–14, 53, 65, 90, 
141, 148–9, 403, 406, 410

non-environment 9, 41, 44
notch 123, 199

diffusers 298, 300, 309, 322, 328–9, 
331, 340–3

number sequence  236, 289, 297, 302, 304, 
306, 308, 313, 342, 375, 378–89, 393, 
398

see also Barker sequence; Chu sequence; 
index sequence; Lüke sequence; 
maximum length sequence (MLS); 
optimized sequence; power residue 
sequence; primitive root sequence; 
quadratic residue sequence

open area of perforated sheet see porosity
optimize/optimization 1, 93–4, 256, 283

and absorbers 189, 236–7, 239
numerical 92, 94, 106, 129
sequence 383–6, 385

optimized curved diffusers 134–5, 147, 332, 
344, 349, 352–4

applications 32–3, 44, 55-6, 63–5, 360
design 34, 353–55
diffusion coefficient (standard 

deviation) 357
performance 355–7
periodicity and modulation 357–60
polar response 63, 356, 360
stage canopy 361–4
see also optimized diffusers

optimized diffusers 47, 59, 63
fractal 357, 368
hybrid absorber-diffusers 385
see also optimized curved diffusers; 

optimized Schroeder diffusers
optimized Schroeder diffusers 300, 302, 

322, 324–9
design 313
diffusion coefficient 328
polar response 299, 327
see also optimized diffusers 

optimum diffusion 289, 291, 300, 322, 324
orchestra pits 62–3
overhead canopies see audience canopy; 

stage canopy

panel absorbers see membrane absorbers
Paris’ formula 134, 141, 399–400, 403
particle velocity 20, 23, 99, 159, 163, 184, 

216, 242, 245, 424, 427, 431–2
high 157, 164, 197, 233–4
low 15, 167, 196, 198
maximum 15, 215, 420
plane wave 17–18

passive electroacoustic absorption 207–8
perfectly matched layer see finite difference 

time domain, PML
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periodic 82–4, 128, 134, 144, 148, 153, 
169, 219, 239, 242–4, 262–4, 270, 319, 
336, 339, 341, 349–50, 351–2, 375, 381, 
386, 389, 391–3, 437

autocorrelation 302, 307–9, 388, 
391–3

diffusers 53, 125, 294, 303–12, 323, 
354, 357–60, 412

lobes 296–7, 337, 342, 357–8, 369, 
378, 383

profiled absorber 241
sonic crystal 53, 244–8, 247, 368
surface/structure 242, 246, 285, 291, 

293–4, 296, 316
waveguide 245–8
see also modulation

phase grating absorber see profiled 
absorber

phenomenological model of porous 
absorbents 103–6, 180–3, 187–8

phononic crystal 245
pipes and ducts 24–5, 207
pits see orchestra pits
planar surface 259–60, 268, 273, 275, 315, 

415
see also flat surface; plane surface
plane surface 43, 58, 91, 135, 142, 146, 

150–3, 258, 272, 289, 292–3, 299, 
306, 331-9

autocorrelation 302
cut-off frequency 332–3
diffusion or scattering coefficient 132, 

357
energy in the specular zone 328, 342
near field 124
polar responses 122, 265, 270, 291–3, 

297–300, 318–19, 334–5, 342, 346, 
360, 380, 395–7, 412, 437–8

panel array (far field 336–7; near field 
337–9)

rotated 132–3
single panel response 331–5
scattered pressure response 332
time response 333
total field frequency response 334
see also flat surface

plaster, acoustic 8, 156, 163, 165–6
plastic 13, 104, 159, 161, 225, 290

foam 178–9
light transmitting 8, 321
thermoformed 321, 369

PML see finite difference time domain, 
PML

polar banana 317
polar response 46, 66, 110, 127–8, 130–1, 

134, 141–2, 148, 150, 258, 276, 293–4, 
298, 329, 378, 410–1

active diffusers 437–8
array of plane panels 337
calculating scattering coefficients from 

143–7
CDMPRD 308
concave arc or prism 63, 125, 146
curved diffusers 348
far field 123–4, 270
hybrid absorber-diffusers 268, 392–3, 

395–6
measurement 111–27
MLS (bipolar 297, 380, 437; unipolar 

380)
modulation 309, 349–50
near and far fields 122-3, 275
near field 323
obtaining 133
optimized (curved surface 63, 360; 

Schroeder diffusers 327)
periodic (semicylinders or arcs 263, 

349–50, 360; surface 412)
plane surface 63, 132, 146, 265, 270, 

308, 318–19, 334–5, 360, 395, 412, 
437–8

prediction accuracy 121
primitive root diffusers 298–300, 310, 

320
random rough surface 412
rotated plane surface 132
quadratic residue diffusers 292–3, 295, 

314, 318–19, 327
Schroeder diffusers 266, 271, 277
semi-circle/cylinder 345, 412
Skyline 111
triangles 341

polyester 15, 207
material properties 171, 178, 179

polystyrene 290, 321, 369
pores 5, 17, 101, 102, 104–6, 156, 159, 

161, 165, 172–3, 180, 188, 191–2, 205, 
215

cylindrical 177–9
open and closed 156–7, 161, 167
shape factor 177, 188
shapes 173, 177–8, 182
size 175–6
structures 162–3, 167–8
tortuosity 178–9

porosity 78, 95, 162, 177, 187–8, 214, 219, 
221

definition 26, 172
double 163, 168
ground 176
measurement of 101–3, 105–6
modelling porous absorbers 174, 180
perforated sheet 209–10, 217
table of typical values 172
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porous absorber/absorption 5, 13, 17–19, 
22, 26, 80, 100, 102–4, 156–93, 214–15, 
217, 219, 222, 231, 373–5, 433

absorption coefficient, predicting 184–6
application 15, 42 (external lagging 24)
anisotropic materials 160, 178, 189, 

190–1
characterizing 25–6
covers 159–60, 186
flow resistivity 169–72
local and extended reaction 189
material types, some 160–9
modelling propagation within 

172–3 (Biot theory for elastic-
framed material 191–2; empirical 
models, macroscopic 173–7; 
phenomenological theoretical models 
180–2; relaxation model 182–3)

open and closed pore 156–7
pore shape factor and characteristic 

lengths 177–8
porosity 172
in resonant absorbers 206–7, 215
surface impedance, predicting 184–91 

(single layer with rigid backing 
184–6; multi-layer 188–9; oblique 
incidence 189–91; transfer matrix 
modelling 22, 184–6)

tortuosity 178–9
see also plaster, acoustic; carpets; 

Coustone; curtains; fibreglass; foam; 
ground; mineral wool; recycled 
materials

power residue sequence 302, 312
Prandtl number 180
PRD see primitive root diffusers
prediction of scattering 252–87

boss models 286
edge diffraction models 285
mode matching 285
polar responses demonstrating accuracy 

265–8, 270–1, 276
random roughness 285–6
time domain BEM 284
wave decomposition 239–44, 285
see also boundary element method; 

finite difference time domain (FDTD); 
finite element analysis; Fourier; 
Fraunhofer; Fresnel; Kirchhoff

presentation format 120
pressure

of a plane wave 17
reflection coefficient see reflection 

coefficient
primitive root 301 

definition 298 
sequence 236, 298–301, 302

primitive root diffusers (PRD) 142–3, 
298–300, 301, 322, 328, 340

Cox and D’Antonio modified PRD 
(CDMPRD) 299–300, 308

Feldman modified primitive root 
diffusers (FMPRD) 299

modulation 309, 311–12, 316–17
polar responses 298–300, 308, 310, 320
scattering and diffusion coefficients 143
specular zone, average energy 328–9

profiled absorbers 232–44
absorption coefficient 237, 241
admittance of wells 240
depth sequence 194
mass elements 238
number of wells 239
theoretical model 239–44 (well 

impedance to absorption: BEM 
241–2; well impedance to absorption: 
wave decomposition 242–4)

propagation constant 17, 95, 99, 174
pyramid 112, 121, 148, 264, 300, 331, 

339–43

quadratic residue diffusers (QRD) 145, 292, 
300, 313, 317, 327, 365, 436

1D 290
2D 290, 316–17
absorption coefficient 233–4
admittance at well entrance 323
application 32, 42–3
autocorrelation 307, 309
critical frequencies 295
cross section 290, 304, 313
design equations 291
diffusion coefficient 293, 303, 307, 310, 

314–15, 328
improving bass response 314
periodicity and modulation 304–9, 309
polar responses 277, 292–3, 295, 305, 

318–19, 394
surface impedance 234
well folding 313
see also Schroeder diffusers

quadratic residue sequence 236, 289–90, 
294, 298, 311–12, 313, 327

autocorrelation 301–2
construction 291, 316–17

quadriphase diffusers see ternary and 
quadriphase diffusers

radiation impedance see impedance, 
radiation

random
addition diffusers (RAD) 367–8
incidence absorption coefficient see 

absorption coefficient
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rough surfaces 285–6, 412
ray tracing 12, 407–11

in a room 404
scattering from a concave arc 343–4
sound reflecting triangles 339–41
see also geometric room acoustic models

reactance 18, 21, 98–9, 210, 224, 238
Reapor 162–3
receiver arc radius, effect of 122, 124
recycled materials 8

see also sustainable materials
redirection 132–3
reflection 34, 110, 135, 334, 337, 344, 404–5

array of (four cylinders 350; random 
semicylinders 351)

audibility 151–2
barriers 27, 66
control 44, 47, 375
density 2, 10, 42, 48, 65
double 340–1
early 40–1, 58, 63, 129, 344, 405, 

414–15 (first order 39, 42, 133, 135)
echo 31–2
energy 136
factor see reflection coefficient
finite-sized plane surface 331
free zone (RFZ) 41–3, 114, 342
from wells 390
grazing 333
ground 169
large semicylinder 345 
late arriving 16
mineral wool 158
overhead 55-6
parasitic 91
phase 396, 407
quality 128
second order 269, 286, 340, 349–50
stage canopy 361–4
triangle 147
see also specular reflection; diffuse 

reflection; wavefronts
reflection coefficient 104, 142, 269, 272, 274, 

281, 296, 301, 378, 383, 397, 407, 435–7
angle of incidence 190
definition 18–22, 255
measurement 26, 74–5, 77, 82, 91–2, 

93
spherical wave 21–2
well 314, 323

reflection phase grating 32
see also maximum length sequence 

diffusers; optimized Schroeder 
diffusers; Schroeder diffusers; 
quadratic residue diffusers; primitive 
root diffusers

reflectors see convex arcs; curved diffusers; 

flat surface; geometric reflectors and 
diffusers; planar surface; plane surface

relaxation model 182–3
resistance 18, 21, 104, 186, 188, 201, 208, 

210, 212, 215–17, 219, 221, 235–6, 238, 
240–1, 431, 433, 435

flow see flow resistance
radiation 244

resonant absorber/absorption 5, 15–16, 22, 
48–9, 50, 71, 189, 196–228, 320, 341, 
370, 431

absorption and diffusion 201–2
design equations: resonant frequency 

208–14
double resonators 223
Helmholtz-membrane absorber 215–16
lateral orifices 227
losses 215–21
mechanisms 197
porous absorbent filling the cavity, 

calculation 221–2
shaped holes and slots 223
slotted Helmholtz absorber, calculation 

221
see also bass trap or bin; clear absorber; 

Helmholtz absorber; masonry devices; 
membrane absorber; metal plate 
resonators; microperforated absorber; 
passive electroacoustic absorption

resonant frequency 208–14
reverberation 16, 63

bass 202
control 4, 7–9, 16–17, 39, 53, 202
enhancement 32
statistical model of 10–13

reverberation chamber 14, 40, 52–3, 127, 
141, 145, 149, 368

measuring absorption coefficients 26, 
70–1, 84–90, 189, 201, 225, 400–3, 
405

to real rooms 403–4
reverberation time 14, 40, 52–3, 88, 147, 

149, 230, 344
definition and formulations 10–12, 

405–6
diffuse reflections 65–6, 149, 152
geometric room acoustic models 129, 

405–7, 410, 414, 416
scattering coefficient measurement 

135–8
room acoustic models see geometric room 

acoustic models
rubber 76–7, 161–2, 165, 371

characteristic lengths 178
in membrane absorbers 197
porosity 172 
tortuosity 179
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Sabine 1
conversion to Millington values 405
formulation 10–11, 14, 86, 405–6

sample
3D printer 127, 139
considerations 125–7, 138–9

sand 160, 168, 176, 179, 188
scattered pressure 83, 121–3, 141, 143, 265, 

273–4, 283, 299, 301, 331, 333, 335, 
338, 349, 356, 365, 410

array of four cylinders 350
curved surface 347
level from a plane surface 332
see also polar response

scattering 1, 40, 53, 58, 63, 66–7, 239, 244
edge 82, 265, 269, 408, 410
geometric room acoustic models 404, 

407–8, 412–13
measurement and characterization 

110–53
prediction of 252–87
surface 34, 46–7, 49–51, 286
theory 264
trees 249
see also polar response 

scattering coefficient 40, 65, 128, 135–47, 
150, 286

anisotropic surfaces 139–41
compared to diffusion coefficient 

110–1, 147
concave sample 146
correlation scattering coefficient 

143–6
definition 111, 128, 135–6
from room diffuseness 148–9
general discussion 127–8
geometric room acoustic models 

129–30, 408–10, 412–16
inverse problem, measurement using 

148
measurement set-up 136, 139
prediction 141–3
principle 135
rationale and procedure 136–8
redirection/rotated plane surface 132
sample considerations 138–9
Schroeder diffusers 140, 145
sinusoidal-shaped sample 140
table 146–7

Schroeder diffusers 112, 125, 130, 289–329, 
341–2, 342, 349, 353, 380, 413, 416

1D 289–90
2D 290 (hexagonal 317; multi-

dimensional devices 315–19)
absorption (construction for little 

absorption 236; coefficient 201, 233, 
319–22; mechanism 233–5; see also 

profiled absorber)
active 435, 437
admittance 323
applications 32, 40, 45, 54, 62
bandwidth 312
diffusion coefficient 145, 328
far field 323
folded wells 313
fractal see Diffractal
low frequency limit 292
optimization of well depths 324–9
perforated sheets 313–15
polar responses 291, 327
prediction 141, 258, 261, 266–7, 

271–2, 274, 276, 277, 285
radiation impedance 315
reflected wavefront 36
scattering coefficient 145
temporal response 36–7, 39
well width 294
see also Flutterfree; maximum length 

sequence diffusers; optimized 
Schroeder diffusers; primitive root 
diffusers; quadratic residue diffusers; 
ternary and quadriphase diffusers

Schroeder frequency 13
seating and audience

absorption 230–2
absorption measurement 88–90
scattering coefficient 415

semicylinder (semicircle) 34, 349, 355-6, 
368, 416

arrays of 120, 126, 349–52
autocorrelation 152
decay of sound from 150
diffusion coefficient 126
impulse response 151–2
level in the critical bands 153
polar response 263, 349–50, 412
total sound field 346, 350–2

semi-ellipse 134, 147
sequence see number sequence 
shaped holes and slots 223
sheep wool 161, 171
sintered 5, 25, 172
Skyline diffusers 50, 111, 140
Snell’s law 19, 23, 189, 335
snow 176, 179
sonic crystal 244–8
sound

beam, effect of curvature 347
hitting a surface 20
insulation and porous absorbents 22, 

161, 167
production room 1–3
reproduction room 1–3, 40–9, 55, 198, 

419, 423
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sound propagation 10, 16–17, 92, 95, 101, 
104, 106, 156, 178, 209, 280, 389, 404

mathematical constructs 17–22
small pore 177, 224
trees 248

spaciousness in auditoria 54–5
spatial

dispersion 34, 37, 39, 46, 133, 150, 
346, 356 (see also diffuse reflections)

impression 51, 54–5, 56, 413
specific heat capacity of air 180
specular reflection 1–3, 41–5, 58, 62, 243, 

267, 285, 367
attenuation 158
bottom of wells 322
coefficient 142
direction 141–2, 271–2, 277, 284, 319, 

347, 349
flat surface and plane panel arrays 34, 

332–3, 335, 337–8
geometric room acoustic models 404, 

408–10, 436
hybrid absorber-diffusers 375–6, 377, 

379–80, 382, 395, 397
redirection 133
scattering coefficient 40, 135–7
stage canopies 362, 364
suppressed 298–99, 309, 312, 328
temporal and frequency response 37–8
triangles and pyramids 331, 339–41, 

343
specular zone 130, 325

definition 122-5
hybrid absorber-diffusers 393
level 328, 342

speech intelligibility 3–4, 17, 31, 199
see also underground (subway) stations

spherical wave reflection coefficient see 
reflection coefficient, spherical wave

stage canopy 56–8, 361–4, 368
density and panel size 363–4

stage enclosure (shells) 56–63, 364, 370
standing wave

mode 14, 48, 52, 198, 407
ratio 74
tube method 70–5, 92
see also impedance tube measurement

statistical model of reverberation 10–3
step function addition 366–7
stepped diffusers 327
street 416

canyons 67, 252, 416 
structural form factor see tortuosity
subway station see underground station
surface pressures 23, 253, 255–6, 258, 260, 

264, 268–71, 280, 284, 427
surround sound 40–1, 47–8, 55

sustainable materials 161–3, 369
swept sine wave 53, 76, 81, 86, 91, 112, 

138

temporal
dispersion 34, 36–7, 39, 43, 150, 277, 

356, 363
evaluation 150–3

ternary and quadriphase
diffusers 377, 395
sequences 382–3, 386–9

thermal
boundary layer 180, 240
conductivity of air 180

time domain BEM 284
tortuosity 26, 167, 177, 180, 188

definition and formulations 178–9
measurement 95, 100, 104–7
table 179

total sound field 111, 147, 151–3, 334, 345, 
351–2, 354

see also frequency response; impulse 
response 

transfer function measurement of absorbers 
75–7, 80–2

transfer (function) matrix modelling 22–4
active absorbers 432
covers 186
double resonator 223
ground 186–7
Helmholtz absorbers 217–19, 221–2
hybrid absorber-diffusers 389
membrane absorbers 198–9, 214
microperforated absorbers 224–5
multi-layer porous absorbent 188–9
porous absorbents 184–6
profiled absorber 240, 242
Schroeder diffusers 314
sonic crystal 245

transmission 18, 22, 28, 205, 245, 368
coefficient 246
loss 248
measurements 78–80, 99, 101, 106

trees 28, 67, 230, 248–9
triangular diffusers 148, 264, 269, 300, 331, 

339–43
arrays of 341–3
diffusion coefficient 134
polar response 340–1
scattering coefficient 147
specular zone pressure level 342

two microphone measurement method 70–1, 
75–7, 80–2

two port model see transfer matrix 
modelling

underground (subway) station 53–4
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vegetation 248–9
velocity see particle velocity; volume 

velocity
viscous boundary layer 98, 105, 126, 156, 

169, 223, 227, 235–7, 253, 294, 321
formulation 180, 240
see also boundary layer effect

visual aesthetics 8, 32, 165, 329, 352, 355, 
364, 368, 375, 389

volume velocity 217, 245–6
volumetric diffusers 52–3, 368–9

wave decomposition prediction 239–44, 285
wavefronts reflected from diffusers and 

reflectors 34-6, 38
wavenumber 17–18, 23–4, 26

definition 17
direct measurement 99–100
high frequency limit 105
inverse measurement method 100–1
in narrow wells 240
within porous absorbents 173, 181–2
anisotropic materials 190–1
Delany and Bazley model 173–5
relaxation model 183
oblique incidence 189–90

Wiener–Khinchine theorem 301
wood 12, 33, 162–3, 171–2, 213, 402

absorbing finish 8, 199
diffusers 34, 290, 321, 369
hybrid absorber-diffusers 375
microperforated 8, 159, 204–5
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